If x = cos 3 π + i sin 3 π , y = cos 3 5 π + i sin 3 5 π , what is the value of ( y x 2 + x y 2 ) 6 ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Good solution.
How is e^{ -i pi } = -1 and e^{ 3 pi }= -1?
Note that
( y x 2 + x y 2 ) 6 = ( x y x 3 + y 3 ) 6
We can use the De Moivre's Theorem which states that
If z is a complex number of the form z = r ( cos θ + i sin θ ) then for any positive integer n , z n = r n ( cos n θ + i sin n θ )
Also,
if z 1 = r 1 ( cos θ 1 + i sin θ 1 ) and z 2 = r 2 ( cos θ 2 + i sin θ 2 ) are two complex numbers, then z 1 × z 2 = r 1 × r 2 [ cos ( θ 1 + θ 2 ) + i sin ( θ 1 + θ 2 ) ]
Thus,
x 3 = [ cos ( 3 π ) + i sin ( 3 π ) ] 3 = cos 3 ( 3 π ) + i sin 3 ( 3 π ) = cos π + i sin π = − 1 + 0 i = − 1
and y 3 = [ cos ( 3 5 π ) + i sin ( 3 5 π ) ] 3 = cos 3 ( 3 5 π ) + i sin 3 ( 3 5 π ) = cos 5 π + i sin 5 π = − 1 + 0 i = − 1
On the other hand,
x y = ( cos 3 π + i sin 3 π ) × ( cos 3 5 π + i sin 3 5 π ) = cos 2 π + i sin 2 π = 1 + 0 i = 1
Finally,
( y x 2 + x y 2 ) 6 = ( x y x 3 + y 3 ) 6 = ( 1 − 1 + ( − 1 ) ) 6 = ( 1 − 2 ) 6 = ( − 2 ) 6 = 6 4
Problem Loading...
Note Loading...
Set Loading...
x = e i 3 π
y = e i 3 5 π
⇒ x 2 = e i 3 2 π
⇒ y 2 = e i 3 1 0 π
Thus, we need to find,
( e i 3 5 π e i 3 2 π + e i 3 π e i 3 1 0 π ) 6
( e − i π + e 3 π ) 6 = ( − 1 + ( − 1 ) ) 6 = ( − 2 ) 6 = 6 4