Complex Numbers Problem Solving 1

Algebra Level 2

If x = cos π 3 + i sin π 3 , y = cos 5 3 π + i sin 5 3 π , x=\cos \frac{\pi}{3}+i\sin \frac{\pi}{3}, y=\cos \frac{5}{3}\pi+i\sin \frac{5}{3}\pi, what is the value of ( x 2 y + y 2 x ) 6 ? \left(\frac{x^2}{y}+\frac{y^2}{x}\right)^{6}?

8 1 64 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Anish Puthuraya
Mar 9, 2014

x = e i π 3 x = e^{i\frac{\pi}{3}}

y = e i 5 π 3 y = e^{i\frac{5\pi}{3}}

x 2 = e i 2 π 3 \Rightarrow x^2 = e^{i\frac{2\pi}{3}}

y 2 = e i 10 π 3 \Rightarrow y^2 = e^{i\frac{10\pi}{3}}

Thus, we need to find,

( e i 2 π 3 e i 5 π 3 + e i 10 π 3 e i π 3 ) 6 \left(\frac{e^{i\frac{2\pi}{3}}}{e^{i\frac{5\pi}{3}}}+\frac{e^{i\frac{10\pi}{3}}}{e^{i\frac{\pi}{3}}}\right)^6

( e i π + e 3 π ) 6 = ( 1 + ( 1 ) ) 6 = ( 2 ) 6 = 64 \left(e^{-i\pi}+e^{3\pi}\right)^6 = \left(-1+(-1)\right)^6 = \left(-2\right)^6 = \boxed{64}

Good solution.

Victor Loh - 7 years, 2 months ago

How is e^{ -i pi } = -1 and e^{ 3 pi }= -1?

Sushmita G - 7 years, 2 months ago
Datu Oen
Mar 26, 2014

Note that

( x 2 y + y 2 x ) 6 = ( x 3 + y 3 x y ) 6 (\frac{x^2}{y} + \frac{y^2}{x} )^6 = (\frac{x^3+y^3}{xy} )^6

We can use the De Moivre's Theorem which states that

If z z is a complex number of the form z = r ( cos θ + i sin θ ) z = r(\cos \theta + i \sin \theta) then for any positive integer n n , z n = r n ( cos n θ + i sin n θ ) z^n = r^n (\cos n\theta + i \sin n\theta)

Also,

if z 1 = r 1 ( cos θ 1 + i sin θ 1 ) z_1 = r_1 (\cos \theta_1 + i \sin \theta_1) and z 2 = r 2 ( cos θ 2 + i sin θ 2 ) z_2 = r_2 (\cos \theta_2 + i \sin \theta_2) are two complex numbers, then z 1 × z 2 = r 1 × r 2 [ cos ( θ 1 + θ 2 ) + i sin ( θ 1 + θ 2 ) ] z_1 \times z_2 = r_1 \times r_2 [\cos (\theta_1 +\theta_2) + i \sin (\theta_1 +\theta_2)]

Thus,

x 3 = [ cos ( π 3 ) + i sin ( π 3 ) ] 3 = cos 3 ( π 3 ) + i sin 3 ( π 3 ) = cos π + i sin π = 1 + 0 i = 1 x^3 = [\cos (\frac{\pi}{3}) + i \sin (\frac{\pi}{3})]^3= \cos 3(\frac{\pi}{3}) + i \sin 3(\frac{\pi}{3}) = \cos\pi + i \sin \pi = -1 + 0i = -1

and y 3 = [ cos ( 5 π 3 ) + i sin ( 5 π 3 ) ] 3 = cos 3 ( 5 π 3 ) + i sin 3 ( 5 π 3 ) = cos 5 π + i sin 5 π = 1 + 0 i = 1 y^3 =[\cos (\frac{5\pi}{3}) + i \sin (\frac{5\pi}{3})]^3 =\cos 3(\frac{5\pi}{3}) + i \sin 3(\frac{5\pi}{3}) = \cos 5\pi + i\sin 5 \pi = -1 + 0i = -1

On the other hand,

x y = ( cos π 3 + i sin π 3 ) × ( cos 5 π 3 + i sin 5 π 3 ) = cos 2 π + i sin 2 π = 1 + 0 i = 1 xy = (\cos \frac{\pi}{3} + i \sin \frac{\pi}{3}) \times (\cos \frac{5\pi}{3} + i \sin \frac{5\pi}{3}) = \cos 2\pi + i \sin 2\pi = 1+ 0i = 1

Finally,

( x 2 y + y 2 x ) 6 = ( x 3 + y 3 x y ) 6 = ( 1 + ( 1 ) 1 ) 6 = ( 2 1 ) 6 = ( 2 ) 6 = 64 (\frac{x^2}{y} + \frac{y^2}{x} )^6 = (\frac{x^3+y^3}{xy} )^6 = (\frac{-1 + (-1) }{1})^6 = (\frac{-2}{1})^6 = (-2)^6 = 64

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...