Length of a c r e a s e crease

Geometry Level 3

A rectangular piece of paper, 24 c m . 24 cm. long by 18 c m 18 cm wide, is folded once in such a way that two diagonally opposite corners coincide. What is the length of the crease(the line made by folding a paper)?


The answer is 22.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Christian Daang
Jan 17, 2015

Derivation of the formula to find the crease of a rectangle.

Let the rectangle be A C D C ACDC' . as the figure suggests, the crease is B E BE .

When you fold it, a convex pentagon will be form so,

Let A C = L e n g t h = t AC = Length = t and A C = W i d t h = s AC' = Width = s

As I said a while ago, a convex pentagon is form so, in T r i a n g l e ( A B C C ) Triangle (ABCC') , Let A B = a AB = a and B C C = s 2 + a 2 BCC' = \sqrt{s^{2} + a^{2}}

Since we know that A B + B C C = t AB + BCC' = t , then,

a + s 2 + a 2 = t a+\sqrt{s^{2} + a^{2}} = t

a t = s 2 + a 2 a-t = -\sqrt{s^{2} + a^{2}}

a 2 2 a t + t 2 = s 2 + a 2 a^{2} - 2at + t^{2} = {s^{2} + a^{2}}

2 a t = t 2 s 2 2at = t^{2} - s^{2}

a = t 2 s 2 2 t a = \cfrac{t^{2} - s^{2}}{2t}

Then, B A = t 2 s 2 2 t BA = \cfrac{t^{2} - s^{2}}{2t} and B C C = t 2 + s 2 2 t BCC' = \cfrac{t^{2} + s^{2}}{2t}

Then, let B E = c r e a s e = F BE = crease = F , A = E C C D A = \angle ECC'D Since T r i a n g l e ( E D C C ) Triangle (EDCC') is similar to T r i a n g l e ( A B C C ) Triangle (ABCC') , then, it's corresponding parts are s i m i l a r similar so therefore, E C C ECC' is similar to B C C BCC' = t 2 + s 2 2 t \cfrac{t^{2} + s^{2}}{2t}

By using Law of C o s i n e s Cosines in T r i a n g l e ( E B C C ) Triangle (EBCC') .

F 2 = ( t 2 + s 2 2 t ) 2 + ( t 2 + s 2 2 t ) 2 2 ( t 2 + s 2 2 t ) 2 c o s ( 90 A ) F^{2} = (\cfrac{t^{2} + s^{2}}{2t})^{2} + (\cfrac{t^{2} + s^{2}}{2t})^{2} - 2(\cfrac{t^{2} + s^{2}}{2t})^{2} * cos(90-A)

-> F 2 = 2 ( t 2 + s 2 2 t ) 2 2 ( t 2 + s 2 2 t ) 2 s i n ( A ) F^{2} = 2(\cfrac{t^{2}+s^{2}}{2t})^{2} - 2(\cfrac{t^{2} + s^{2}}{2t})^{2} * sin(A)

-> F 2 = ( t 2 + s 2 ) 2 2 t 2 ( t 2 + s 2 ) 2 2 t 2 t 2 s 2 2 t 2 t t 2 + s 2 F^{2} = \cfrac{({t^{2} + s^{2}})^{2}}{2t^{2}} - \cfrac{({t^{2} + s^{2}})^{2}}{2t^{2}} * \cfrac{t^{2} - s^{2}}{2t} * \cfrac{2t}{t^{2} + s^{2}}

-> F 2 = ( t 2 + s 2 ) 2 2 t 2 ( t 2 + s 2 ) 2 2 t 2 t 2 s 2 t 2 + s 2 F^{2} = \cfrac{({t^{2} + s^{2}})^{2}}{2t^{2}} - \cfrac{({t^{2} + s^{2}})^{2}}{2t^{2}} * \cfrac{t^{2} - s^{2}}{t^{2} + s^{2}}

-> F 2 = ( t 2 + s 2 ) 2 2 t 2 ( t 2 + s 2 ) ( t 2 s 2 ) 2 t 2 F^{2} = \cfrac{({t^{2} + s^{2}})^{2}}{2t^{2}} - \cfrac{({t^{2} + s^{2})}*({t^{2} - s^{2}})}{2t^{2}}

-> F 2 = ( t 2 + s 2 ) 2 ( t 2 + s 2 ) ( t 2 s 2 ) 2 t 2 F^{2} = \cfrac{({t^{2} + s^{2}})^{2} - ({t^{2} + s^{2}})*({t^{2} - s^{2}})}{2t^{2}}

-> F 2 = ( t 2 + s 2 ) 2 s 2 2 t 2 F^{2} = \cfrac{({t^{2} + s^{2}})*2s^{2}}{2t^{2}}

-> F = s t t 2 + s 2 F = \cfrac{s}{t} * \sqrt{t^{2} + s^{2}}

\therefore

length of crease in this problem = 18 24 1 8 2 + 2 4 2 \cfrac{18}{24} * \sqrt{18^{2} + 24^{2}}

= 3 4 30 \cfrac{3}{4} * 30

= 22.5 c m \boxed{22.5 cm}

Lu Chee Ket
Jan 17, 2015

18^2 + x^2 = (24 - x)^2 = 24^2 - 48 x + x^2

=> x = (24^2 - 18^2)/ 48 = (24 - 18)(24 + 18)/ 48 = 5.25

Length of crease = SQRT [18^2 + (24 - 2 x)^2] = SQRT (18^2 +13.5^2) = SQRT (506.25) = 22.5

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...