Length Of An Angle Bisector?

Geometry Level 4

Given a 5-12-13 right triangle, find the length of the angle bisector from the right angle to the hypotenuse. If this length can be expressed as a c b \dfrac {a\sqrt{c}}{b} , where a , b a, b are coprime positive integers, and c c is a square-free positive integer, find a + b + c a+b+c .

Bonus:

  • Generalise this for any right triangle.

  • Generalise this for any triangle.


The answer is 79.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

9 solutions

Rishabh Jain
May 19, 2016

Relevant wiki: Area of Triangles - Problem Solving - Medium

Let the sides opposite to angle A , B , C A,B , C be a , b , c a,b,c respectively while B A C = θ \angle BAC=\theta so that B A P = C A P = θ 2 \angle BAP=\angle CAP=\dfrac{\theta}{2} and A P = x AP=x .

a r ( A B C ) = a r ( A B P ) + a r ( A C P ) ar(\triangle ABC)=ar(\triangle ABP)+ar(\triangle ACP)

1 2 b c sin θ = 1 2 c x sin θ 2 + 1 2 b x sin θ 2 \implies \dfrac{1}{2}bc\sin \theta=\dfrac{1}2cx\sin\dfrac{\theta}2+\dfrac{1}2bx\sin\dfrac{\theta}{2} ( S i n c e area = 1 2 a b × ( Included angle ) (Since \small{\color{#D61F06}{\text{ area}=\dfrac{1}{2}ab\times(\text{ Included angle}}})

Use double angle formula and then reaarange for x x to get:-

x = 2 b c b + c cos θ 2 \Large \boxed{x=\dfrac{2bc}{b+c}\cos\dfrac{\theta}2}

Special case: When θ = 90 ° \theta=90° , x = 2 b c b + c cos ( 45 ° ) x=\dfrac{2bc}{b+c}\cos (45°)

For the given question b = 5 , c = 12 b=5,c=12 , Hence:

x = 2 5 12 5 + 12 cos ( 45 ° ) = 60 2 17 x=\dfrac{2\cdot 5\cdot 12}{5+12}\cos (45°)=\dfrac{60\sqrt 2}{17}

60 + 2 + 17 = 79 \therefore 60+2+17=\large\color{#3D99F6}{79}

Amazing solution + 1...!

Rishabh Tiwari - 5 years ago
Sharky Kesa
May 19, 2016

Relevant wiki: Area of Triangles - Problem Solving - Medium

We can use Stewart's Theorem to generalise this for any triangle. First, I will prove Stewart's Theorem, which states a ( p 2 + m n ) = b 2 m + c 2 n a(p^2+mn)=b^2m+c^2n for any cevian of a triangle (Below is the labeling definitions)

Let Δ A B C \Delta ABC have sides a a , b b and c c as usual. Let A P AP be a cevian, with P P on a a , with length p p . Let P P divide B C BC into lengths B P = m BP=m and C P = n CP=n .

First, we will find an expression for cos A P B \cos \angle APB . But, by Cosine Rule, this is simply cos A P B = p 2 + m 2 c 2 2 p m \cos \angle APB = \dfrac {p^2+m^2-c^2}{2pm} . Similarly, cos A P C = p 2 + n 2 b 2 2 p n \cos \angle APC = \dfrac {p^2+n^2-b^2}{2pn} . But, A P B \angle APB and A P C \angle APC are supplementary, so their cosines add to 0. Thus, we have:

p 2 + m 2 c 2 2 p m + p 2 + n 2 b 2 2 p n = 0 p 2 n + m 2 n c 2 n + p 2 m + n 2 m b 2 m = 0 p 2 m + p 2 n + m 2 n + m n 2 = b 2 m + c 2 n ( m + n ) ( p 2 + m n ) = b 2 m + c 2 n a ( p 2 + m n ) = b 2 m + c 2 n \begin{aligned} \dfrac {p^2+m^2-c^2}{2pm}+\dfrac {p^2+n^2-b^2}{2pn} &= 0\\ p^2n+m^2n-c^2n+p^2m+n^2m-b^2m&=0\\ p^2m+p^2n+m^2n+mn^2&=b^2m+c^2n\\ (m+n)(p^2+mn)&=b^2m+c^2n\\ a(p^2+mn)&=b^2m+c^2n \end{aligned}

Thus, we have proven Stewart's Theorem.

Now, by Angle Bisector Theorem, c b = m n \dfrac {c}{b}=\dfrac{m}{n} . Let m = k c m=kc , n = k b n=kb , with k = a b + c k=\dfrac{a}{b+c} . Now, we can substitute this into the above expression to get

a ( p 2 + k 2 b c ) = k b 2 c + k c 2 b p 2 = k b c ( b + c k a ) a = b c ( a b + c ) ( b + c a 2 b + c a ) = b c ( a b + c ) ( ( b + c ) 2 a 2 a ( b + c ) ) = b c ( ( b + c ) 2 a 2 ( b + c ) 2 ) = b c ( 1 ( a b + c ) 2 ) p = b c ( 1 ( a b + c ) 2 ) \begin{aligned} a(p^2+k^2bc)&=kb^2c+kc^2b\\ p^2&=\dfrac{kbc(b+c-ka)}{a}\\ &= bc\left ( \dfrac {a}{b+c} \right ) \left ( \dfrac {b+c-\frac{a^2}{b+c}}{a} \right )\\ &= bc\left ( \dfrac {a}{b+c} \right ) \left ( \dfrac {(b+c)^2-a^2}{a(b+c)} \right )\\ &= bc \left (\dfrac {(b+c)^2-a^2}{(b+c)^2} \right )\\ &= bc (1- \left (\dfrac {a}{b+c} \right )^2)\\ p &= \sqrt{bc \left (1- \left ( \dfrac {a}{b+c} \right ) ^2 \right )} \end{aligned}

Thus, the length of the angle bisector of a general triangle is b c ( 1 ( a b + c ) 2 ) \sqrt{bc \left (1- \left (\dfrac {a}{b+c} \right )^2 \right )} . If the angle being bisected is a right angle, we can substitute a = b 2 + c 2 a=\sqrt{b^2+c^2} to get that the length is b c 2 b + c \dfrac {bc\sqrt{2}}{b+c} . Thus, if we substitue b = 5 , c = 12 b=5, c=12 , we get the length being 60 2 17 \dfrac {60\sqrt{2}}{17} . Thus, the answer for this problem is 60 + 2 + 17 = 79 60+2+17=\boxed{79} .

@Sharky Kesa The question says a a and b b are co-prime positive integers. Going by that a = 60 , b = 2 a=60,b=2 does not satisfy.

Nishant Sharma - 5 years ago

Log in to reply

Sorry, i mixed b and c around.

Sharky Kesa - 5 years ago

Your questions are truly amazing!! They help me a lot to learn nd inspire! Thnx ! And nice solution! !+1

Rishabh Tiwari - 5 years ago

A p p l y i n g a n g l e b i s e c t o r t h e o r e m , A M = 5 13 5 + 12 = 5 13 17 . C o s M A B = 5 13 . A p p l y i n g C o s L a w t o Δ M A B , B M 2 = A M 2 + A B 2 2 A M A B C o s M A B = ( 5 13 17 ) 2 + 25 2 5 13 17 5 5 13 = 25 { ( 13 17 ) 2 + 1 2 ( 5 13 17 ) } = 25 1 7 2 ( 1 3 2 + 1 7 2 170 ) = 25 1 7 2 2 ( 1 2 2 ) = ( 5 2 1 2 2 ) 2 1 7 2 = a 2 b c 2 a + b + c = 60 + 2 + 17 = 79 Applying \ angle\ bisector\ theorem, AM=\dfrac{5*13}{5+12}=\dfrac{5*13}{17}.\\ CosMAB=\dfrac 5 {13}.\\ Applying \ Cos\ Law\ to\ \Delta\ MAB,\\ BM^2=AM^2+AB^2 - 2*AM*AB*CosMAB=\left(\dfrac{5*13}{17}\right)^2 + 25 - 2*\dfrac{5*13}{17}*5*\dfrac 5 {13}\\ \scriptsize\ \ \ \ \ \ =25\left\{\left(\dfrac{13}{17}\right)^2+1 - 2*\left(\dfrac{5*13}{17}\right)\right\}=\dfrac{25}{17^2}*(13^2 + 17^2 - 170) \scriptsize\ \ \ \ \ =\dfrac{25}{17^2}*2*(12^2)=\dfrac{(5^2*12^2)*2}{17^2}=\dfrac{a^2*b}{c^2}\\ \implies\ \ a+b+c=60+2+17=\color{#D61F06}{79} \\ \ \ \ \\ O R OR On second though, late night, the simple solution is as under. S i n A = 12 13 , C o s A = 5 13 , S i n A + C o s A = 17 13 . S i n A M B = S i n { M B A + B A M } = S i n { 45 + B A M } = 1 2 { S i n A + C o s A } = 1 2 17 13 . U s i n g S i n L a w i n Δ A M B , B M = S i n A A B S i n A M B = 12 13 5 2 13 17 = 12 5 2 17 = a b c . a + b + c = 60 + 2 + 17 = 79. \color{#3D99F6}{\text{On second though, late night, the simple solution is as under. }\\ SinA=\frac {12}{13},\ \ CosA=\frac 5 {13},\ \ SinA + CosA=\dfrac {17}{13}.\\ SinAMB=Sin\{MBA + BAM\}=Sin\{45 + BAM\}=\dfrac 1 {\sqrt2}*\{SinA + CosA\}=\dfrac 1 {\sqrt2}*\dfrac {17}{13}.\\ Using\ Sin\ Law\ in\ \Delta\ AMB,\\ BM=SinA*\dfrac{AB}{SinAMB}=\dfrac {12}{\color{#D61F06}{13}}*5*\dfrac{\sqrt2*\color{#D61F06}{13}}{17}=\dfrac{12*5*\sqrt2}{17}=\dfrac{a*\sqrt b} c.\\ a+b+c=60+2+17=79. }

solution solution

We can use Sine rule in all three triangles.

In A B C \triangle ABC .

B C sin A = A C sin B = A B sin C \Rightarrow \dfrac{BC}{\sin A}=\dfrac{AC}{\sin B}=\dfrac{AB}{\sin C}

5 sin A = 13 sin 90 ° = 12 sin C \dfrac{5}{\sin A}=\dfrac{13}{\sin 90°}=\dfrac{12}{\sin C}

Sin A = 5 13 \boxed{ \text{Sin A}=\dfrac{5}{13}} sin C = 12 13 \boxed{\sin C=\dfrac{12}{13}}

Now, in A B D \triangle ABD .

B D sin A = A D sin B = A B sin D \Rightarrow \dfrac{\color{#3D99F6}{BD}}{\sin A}=\dfrac{AD}{\sin B}=\dfrac{AB}{\sin D}

B D 5 13 = 13 x sin 45 ° \dfrac{\color{#3D99F6}{BD}}{\frac{5}{13}}=\dfrac{13-\color{#EC7300}{x}}{\sin 45°}

13 B D 5 = 2 ( 13 x ) \dfrac{13\color{#3D99F6}{BD}}{5}=\sqrt{2}(13-\color{#EC7300}{x}) .... ( 1 ) (1)

Now, in B D C \triangle BDC .

B D sin C = D C sin B = B C sin D \Rightarrow \dfrac{\color{#3D99F6}{BD}}{\sin C}=\dfrac{DC}{\sin B}=\dfrac{BC}{\sin D}

B D 12 13 = x sin 45 ° \dfrac{\color{#3D99F6}{BD}}{\frac{12}{13}}=\dfrac{\color{#EC7300}{x}}{\sin 45°}

13 B D 12 = 2 x \dfrac{13\color{#3D99F6}{BD}}{12}=\sqrt{2}\color{#EC7300}{x} .... ( 2 ) (2)

From ( 1 ) (1) and ( 2 ) (2) .

x = 65 17 \boxed{\color{#EC7300}{x}=\dfrac{65}{17}}

Pluging the value of x \color{#EC7300}{x} in ( 2 ) (2) .

13 B D 12 = 2 × 65 17 \Rightarrow \dfrac{13\color{#3D99F6}{BD}}{12}=\sqrt{2}×\dfrac{65}{17}

B D = 60 2 17 \boxed{\color{#3D99F6}{BD}=\dfrac{60\sqrt{2}}{17}}

60 2 17 = a b c \dfrac{60\sqrt{2}}{17}=\dfrac{a\sqrt{b}}{c}

a + b + c = 60 + 2 + 17 = 79 \therefore a+b+c=60+2+17=\boxed{\color{#D61F06}{79}}

Let d d be an angle bisector. Applying Stewart's theorem, d = c 2 n + b 2 m n m a a d=\sqrt { \frac { { c }^{ 2 }n+{ b }^{ 2 }m-nma }{ a } } . Appyling angle bisector theorem, n b = m c \frac { n }{ b } =\frac { m }{ c } and, as m + n = a m+n=a , we can solve for m m and n n , and find the value of the length of the angle bisector.

In the given particular case, m = 65 / 17 m=65/17 and n = 156 / 17 n=156/17 , then d = 60 2 17 d=\frac { 60\sqrt { 2 } }{ 17 }

Ahmad Saad
May 21, 2016

A G
May 21, 2016

I simply solved this problem by imagining the triangle on an x-y coordinate plane (with the right angle at the origin). In this case, the angle bisector could be represented by the equation x = y and the hypotenuse of the triangle could be represented by the equation 12x + 5y = 60 (or 5x + 12y = 60; order doesn't really matter in this case). Solving the system of equations, we get that the point of intersection is (60/17, 60/17), which is 60 sqrt(2) / 17 units away from the origin. Adding these up, we get 60 + 17 + 2 = 79. Is there anyone else who did this?

That's a neat solution for this question. Too bad it can't be used to generalise for all triangles.

Sharky Kesa - 5 years ago
Paola Ramírez
May 21, 2016

Relevant wiki: Angle Bisector Theorem

Let A B = a , B C = b , A C = c , D C = x AB=a, BC=b, AC=c, DC=x and B D = y BD=y

By angle bisector theorem

a b = c x x \frac{a}{b}=\frac{c-x}{x} \Rightarrow a x = b c b x ax=bc-bx so x = b c a + b x=\frac{bc}{a+b}

Then by law of sines

b c a + b sin 45 ° = y sin C \frac{\frac{bc}{a+b}}{ \sin 45°}=\frac{y}{ \sin \angle C}

y = b c a + b sin 45 ° × sin C y=\frac{\frac{bc}{a+b}}{ \sin 45°}\times \sin \angle C

y = b c a + b sin 45 ° × a c y=\frac{\frac{bc}{a+b}}{ \sin 45°}\times \frac{a}{c}

y = a b ( a + b ) sin 45 ° \boxed{y=\frac{ab}{(a+b) \sin45°}}

This is the bisector's length of the angle bisector in any rectangle triangle given only their cathetus.

Making a substitution we get angle bisector = 60 2 17 =\frac{60\sqrt{2}}{17} with a + b + c = 79 \boxed{a+b+c=79}

Similar problem: Cool Bisector

Any question, be free of asking in comments.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...