Length Q[1]

Calculus Level 2

The cardioid above is defined by the equation r = 1 + sin θ r=1+ \sin\theta , where the Cartesian co-ordinates x x and y y define r r as r = x 2 + y 2 r=\sqrt{x^{2} +y^{2}} .

Find the length of the cardioid.


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Feb 22, 2019

The length of curve in polar coordinate from θ = 0 \theta = 0 to 2 π 2\pi is given by (see Arc Length of Polar Curves) :

s = 0 2 π r 2 + ( d r d θ ) 2 d θ Note that the Cardioid is = 2 π 2 π 2 r 2 + ( d r d θ ) 2 d θ symmetrical about the y -axis = 2 π 2 π 2 ( 1 + sin θ ) 2 + cos 2 θ d θ = 2 π 2 π 2 2 + 2 sin θ d θ As sin x = cos ( π 2 x ) = 2 2 π 2 π 2 1 + cos ( π 2 θ ) d θ and cos ( 2 x ) = 2 cos 2 x 1 = 2 2 π 2 π 2 2 cos 2 ( π 4 θ 2 ) d θ = 4 π 2 π 2 cos ( π 4 θ 2 ) d θ = 8 sin ( π 4 θ 2 ) π 2 π 2 = 8 ( sin 0 sin π 2 ) = 8 \begin{aligned} s & = \int_0^{2\pi} \sqrt{r^2 + \left(\frac {dr}{d\theta}\right)^2}\ d\theta & \small \color{#3D99F6} \text{Note that the Cardioid is} \\ & = 2 \int_{-\frac \pi 2}^\frac \pi 2 \sqrt{r^2 + \left(\frac {dr}{d\theta}\right)^2}\ d\theta & \small \color{#3D99F6} \text{symmetrical about the }y\text{-axis} \\ & = 2 \int_{-\frac \pi 2}^\frac \pi 2 \sqrt{(1+\sin \theta)^2 + \cos^2 \theta}\ d\theta \\ & = 2 \int_{-\frac \pi 2}^\frac \pi 2 \sqrt{2+ 2\color{#3D99F6} \sin \theta}\ d\theta & \small \color{#3D99F6} \text{As }\sin x = \cos \left(\frac \pi 2 - x\right) \\ & = 2\sqrt 2 \int_{-\frac \pi 2}^\frac \pi 2 \sqrt{1+ \color{#3D99F6} \cos \left(\frac \pi 2 - \theta\right)}\ d\theta & \small \color{#3D99F6} \text{and }\cos (2x) = 2 \cos^2 x -1 \\ & = 2\sqrt 2 \int_{-\frac \pi 2}^\frac \pi 2 \sqrt{\color{#3D99F6} 2 \cos^2 \left(\frac \pi 4 - \frac \theta 2 \right)}\ d\theta \\ & = 4 \int_{-\frac \pi 2}^\frac \pi 2 \cos \left(\frac \pi 4 - \frac \theta 2 \right)\ d\theta \\ & = - 8 \sin \left(\frac \pi 4 - \frac \theta 2 \right)\bigg|_{-\frac \pi 2}^\frac \pi 2 \\ & = - 8 \left(\sin 0 - \sin \frac \pi 2\right) \\ & = \boxed 8 \end{aligned}

Thanks for the solution :)

Amal Hari - 2 years, 3 months ago

You are welcome

Chew-Seong Cheong - 2 years, 3 months ago
Amal Hari
Feb 21, 2019

r is a vector which can be resolved into cartesian components x and y which are dependent on parameter θ \theta .

x = r c o s ( θ ) x=r cos(\theta) and y = r c o s ( θ ) y=r cos(\theta)

d x d θ = d r d θ × c o s ( θ ) r s i n θ \dfrac{dx}{d\theta}=\dfrac{dr }{d\theta}\times cos(\theta) -r sin\theta

d y d θ = d r d θ × s i n ( θ ) + r c o s θ \dfrac{dy}{d\theta}=\dfrac{dr }{d\theta}\times sin(\theta) +r cos\theta

( d x d θ ) 2 + ( d y d θ ) 2 = ( d r d θ ) 2 + r 2 (\dfrac{dx}{d\theta})^{2}+(\dfrac{dy}{d\theta})^{2} =(\dfrac{dr}{d\theta})^{2} +r^{2} [1]

d x 2 + d y 2 = d L \sqrt{dx^{2} +dy^{2}}=dL

( d x d θ × d θ ) 2 + ( d y d θ × d θ ) 2 = d L \sqrt{(\dfrac{dx}{d\theta} \times d\theta)^{2} +(\dfrac{dy}{d\theta} \times d\theta)^{2}}=dL

( d x d θ ) 2 + ( d y d θ ) 2 ) × d θ = d L \sqrt{(\dfrac{dx}{d\theta})^{2} +(\dfrac{dy}{d\theta})^{2})} \times d\theta=dL

From[1]

r 2 + d r d θ × d θ = d L \sqrt { r^{2} +\dfrac{dr}{d\theta}}\times d\theta=dL

Taking integral of d L dL from θ = 0 t o 2 π \theta =0 to\thinspace 2\pi gives L,length of cardioid

L = 0 2 π r 2 + d r d θ × d θ L=\displaystyle \int^{2\pi}_{0}\sqrt { r^{2} +\dfrac{dr}{d\theta}}\times d\theta

L = 0 2 π ( 1 + s i n θ ) 2 + c o s 2 θ × d θ L=\displaystyle \int^{2\pi}_{0}\sqrt { (1+sin\theta)^{2} +cos^{2}\theta}\times d\theta

L = 0 2 π 2 + 2 s i n θ × d θ = 8 L=\displaystyle \int^{2\pi}_{0}\sqrt { 2+2sin\theta}\times d\theta =\boxed{8}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...