Lengthy, Lengthier, Lengthiest!

Geometry Level 3

Consider a circle Ω ( x , y ) : x 2 + y 2 6 x 12 y 405 = 0 \Omega(x,y): x^2+y^2-6x-12y-405=0 . Let P ( 13 , 26 ) P \equiv (13,26) .Let t 1 , t 2 t_1 , t_2 be the tangents from P P to Ω \Omega . Let t 1 , t 2 Ω = { A , B } t_1 , t_2 \cap \Omega =\{A,B\} respectively . If A ( x A , y A ) , B ( x B , y B ) A \equiv (x_{A} , y_{A} ) , B \equiv (x_{B} , y_{B}) ,

Find x A + y A + x B + y B x_{A} + y_{A}+x_{B} + y_{B} .


The answer is 72.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Andrew Ellinor
Sep 11, 2015

Let a point of tangency to the circle be ( x , y ) (x, y) . The tangent to the circle must be perpendicular to the line that contains the same point and the radius of the circle. The slope of a tangent will be y 26 x 13 \frac{y - 26}{x - 13} and the slope of the radius-containing line is y 6 x 3 \frac{y - 6}{x - 3} . Because these lines are perpendicular, we have that y 26 x 13 = x 3 y 6 x 2 + y 2 16 x 32 y + 195 = 0 or x 2 + y 2 = 16 x + 32 y 195. \frac{y - 26}{x - 13} = -\frac{x - 3}{y - 6} \longrightarrow x^2 + y^2 - 16x - 32y + 195 = 0 \hspace{.2cm} \text{ or } \hspace{.2cm} x^2 + y^2 = 16x + 32y - 195. Substituting this into the equation of the circle Ω \Omega given yields 10 x + 20 y 600 = 0 or x = 60 2 y . 10x + 20y - 600 = 0 \hspace{.2cm} \text{ or } \hspace{.2cm} x = 60 - 2y. Further substituting this into Ω \Omega gives us 5 y 2 240 y + 2880 = 0. 5y^2 - 240y + 2880 = 0. The sum of the solutions to this y A + y B y_A + y_B is 240 5 = 48 \frac{240}{5} = 48 . Similarly, we find x A + x B = 24 x_A + x_B = 24 . Therefore x A + y A + x B + y B = 72 x_A + y_A + x_B + y_B = \boxed{72} .

Nihar Mahajan
Jun 12, 2015

Since the calculations are quite tedious , I will post only the method and not the working:

  • First from the equation of circle we find that center O ( 3 , 6 ) O \equiv (3,6) and radius r = 15 2 r=15\sqrt{2} .

  • Let the slope of tangent be δ \delta . So we have the equation of tangent :

y 26 = δ ( x 13 ) δ x y 13 ( δ 2 ) = 0 y-26=\delta(x-13) \Rightarrow \delta x-y -13(\delta-2)=0

  • Using distance of a line from a point formula we get:

15 2 = δ ( 3 ) ( 6 ) 13 ( δ 2 ) δ 2 + 1 After squaring both sides and some simplification we have, ( 7 δ + 1 ) ( δ + 1 ) = 0 δ = 1 7 o r 1 15\sqrt{2}= \dfrac{|\delta(3)-(6) -13(\delta-2)|}{\sqrt{\delta^2+1}} \\ \text{After squaring both sides and some simplification we have,}\\ \Rightarrow (7\delta+1)(\delta+1)=0 \\ \Rightarrow \delta = -\dfrac{1}{7} \ or \ -1

  • When δ = 1 7 \delta = -\dfrac{1}{7} , we have equation of t 1 t_1 as : x + 7 y = 195 x+7y=195 . To get the coordinates of A A we solve the following system of equation:

x + 7 y = 195 x 2 + y 2 6 x 12 y 405 = 0 \begin{array}{c}& x+7y & = & 195 \\ x^2+y^2-6x-12y-405 & = & 0 \end{array}

After solving , we get ( x A , y A ) = ( 6 , 27 ) (x_A,y_A )= (6,27) .

  • When δ = 1 \delta = -1 , we have equation of t 2 t_2 as : x + y = 39 x+y=39 . To get the coordinates of B B we solve the following system of equation:

x + y = 39 x 2 + y 2 6 x 12 y 405 = 0 \begin{array}{c}& x+y & = & 39 \\ x^2+y^2-6x-12y-405 & = & 0 \end{array}

After solving , we get ( x B , y B ) = ( 18 , 21 ) (x_B,y_B )= (18,21) .

So required sum = 6 + 27 + 18 + 21 = 72 = 6+27+18+21= \boxed{72} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...