Less annoying than it looks

Calculus Level 3

0 π 2 sin 11 x cos 9 x d x = A B \int_{0}^{\frac{\pi}{2}} \sin^{11}x\cos^{9}x\ dx = \frac{A}{B}

The equation above holds true for positive coprime integers A A and B B . Give your answer as A + B A+B .


The answer is 2521.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Chew-Seong Cheong
Jun 20, 2019

I = 0 π 2 sin 11 x cos 9 x d x = 0 π 2 sin 11 x cos 8 x cos x d x = 0 π 2 sin 11 x ( 1 sin 2 x ) 4 cos x d x Let u = sin x d u = cos x d x = 0 1 u 11 ( 1 u 2 ) 4 d u = 0 1 ( u 19 4 u 17 + 6 u 15 4 u 13 + u 11 ) d u = 1 20 4 18 + 6 16 4 14 + 1 12 = 1 2520 \begin{aligned} I & = \int_0^\frac \pi 2 \sin^{11} x \cos^9 x \ dx \\ & = \int_0^\frac \pi 2 \sin^{11} x \cos^8 x \cdot \cos x\ dx \\ & = \int_0^\frac \pi 2 \sin^{11} x (1-\sin^2 x)^4 \cdot \cos x\ dx & \small \color{#3D99F6} \text{Let }u = \sin x \implies du = \cos x \ dx \\ & = \int_0^1 u^{11}\left(1-u^2\right)^4 \ du \\ & = \int_0^1 \left(u^{19} - 4u^{17} + 6u^{15} - 4u^{13} + u^{11} \right) \ du \\ & = \frac 1{20} - \frac 4{18} + \frac 6{16} - \frac 4{14} + \frac 1{12} \\ & = \frac 1{2520} \end{aligned}

Therefore, A + B = 1 + 2520 = 2521 A+B = 1+2520 = \boxed{2521} .

That really is brilliant!

Chris Lewis - 1 year, 11 months ago

Log in to reply

Glad that you like it.

Chew-Seong Cheong - 1 year, 11 months ago
William Allen
Jun 19, 2019

I = 0 π 2 sin 11 x cos 9 d x = β ( 5 , 6 ) 2 = 4 ! 5 ! 10 ! = 1 2520 I=\displaystyle\int_{0}^{\frac{\pi}{2}} \sin^{11}x\cos^{9} dx = \frac{\beta(5,6)}{2} = \frac{4!\cdot 5!}{10!}=\frac{1}{2520}

A + B = 1 + 2520 = 2521 \implies A+B=1+2520=\boxed{2521}

Try using Walli's formula

Mercedes 2
Oct 12, 2019

Let, I = 0 π 2 sin 11 x cos 9 x d x = 0 π 2 cos 11 x sin 9 x d x a b f ( x ) d x = a b f ( a + b x ) d x So, I = 1 2 0 π 2 sin 9 x cos 9 x ( sin 2 x + cos 2 x ) d x = 1 2 0 π 2 sin 9 x cos 9 x d x sin 2 x + cos 2 x = 1 = 1 2 0 π 2 sin 9 x cos x ( 1 sin 2 x ) 4 d x Let, u = sin x d u = cos x d x = 1 2 0 1 u 9 ( 1 u 2 ) 4 d u = 1 2 0 1 ( u 17 4 u 15 + 6 u 13 4 u 11 + u 9 ) d u = 1 2520 Hence, A + B = 1 + 2520 = 2521 \begin{aligned} \text{Let, I} &= \int_0^{\frac\pi2}\sin^{11}{x}\cos^9{x}\ dx\\ &= \int_0^{\frac\pi2}\cos^{11}{x}\sin^9{x}\ dx \ &\because \int_a^bf(x)\ dx = \int_a^bf(a+b-x)\ dx\\ \text{So, I} &= \frac12 \int_0^{\frac\pi2} \sin^9x\cos^9x\left(\sin^2x+\cos^2x\right)\ dx\\ &= \frac12 \int_0^{\frac\pi2} \sin^9x\cos^9x \ dx & \because \sin^2x+ \cos^2x=1\\ &= \frac12 \int_0^{\frac\pi2} \sin^9{x}\cos{x}{\left(1-\sin^2x\right)}^4\ dx & \text{Let, } u=\sin{x} \implies \ du=\cos{x} \ dx \\ &=\frac12 \int_0^1 {u}^{9}{\left(1-u^2\right)}^4 \ du\\ &= \frac12\int_0^1\left(u^{17} - 4u^{15} + 6u^{13} - 4u^{11} + u^9\right)\ du\\ &= \frac1{2520} \\ &\text{Hence, } A +B = 1 + 2520 = \boxed{2521} \end{aligned}

sin 11 ( x ) cos 9 ( x ) d x 63 cos 2 ( x ) 131072 + 21 cos ( 4 x ) 1048576 + 7 cos ( 6 x ) 131072 + 9 cos ( 12 x ) 2097152 + 9 cos ( 14 x ) 3670016 + cos ( 20 x ) 10485760 3 cos ( 8 x ) 262144 9 cos ( 10 x ) 655360 cos ( 16 x ) 1048576 cos ( 18 x ) 4718592 \int \sin ^{11}(x) \cos ^9(x) \, dx \Rightarrow \\ -\frac{63 \cos ^2(x)}{131072}+\frac{21 \cos (4 x)}{1048576}+\frac{7 \cos (6 x)}{131072}+\frac{9 \cos (12 x)}{2097152}+\frac{9 \cos (14 x)}{3670016}+\frac{\cos (20 x)}{10485760}-\frac{3 \cos (8 x)}{262144}-\frac{9 \cos (10 x)}{655360}-\frac{\cos (16 x)}{1048576}-\frac{\cos (18 x)}{4718592}

How to do the indefinite integral:

Apply this reduction formula five times:

( x cos m ) ( x sin n ) d x = ( x cos m + 1 ) ( x sin n 1 ) m + n + n 1 m + n ( x cos m ) ( x sin n 2 ) d x \int \left(x \cos ^m\right) \left(x \sin ^n\right) \, dx = -\frac{\left(x \cos ^{m+1}\right) \left(x \sin ^{n-1}\right)}{m+n} + \frac{n-1}{m+n} \int \left(x \cos ^m\right) \left(x \sin ^{n-2}\right) \, dx

giving:

1 20 ( x sin 10 ) ( x cos 10 ) 1 36 ( x sin 8 ) ( x cos 10 ) 1 72 ( x sin 6 ) ( x cos 10 ) 1 168 ( x sin 4 ) ( x cos 10 ) 1 504 ( x sin 2 ) ( x cos 10 ) + 1 252 ( x sin ) ( x cos 9 ) d x -\frac{1}{20} \left(x \sin ^{10}\right) \left(x \cos ^{10}\right)-\frac{1}{36} \left(x \sin ^8\right) \left(x \cos ^{10}\right)-\frac{1}{72} \left(x \sin ^6\right) \left(x \cos ^{10}\right)-\frac{1}{168} \left(x \sin ^4\right) \left(x \cos ^{10}\right)-\frac{1}{504} \left(x \sin ^2\right) \left(x \cos ^{10}\right)+\frac{1}{252} \int (x \sin ) \left(x \cos ^9\right) \, dx

Substitute u = cos ( x ) u=\cos(x) and d u = s i n ( x ) d x du=-sin(x)dx : 1 252 u 9 d u u 10 10 \frac{1}{252}\,\int u^9\,du \Rightarrow \frac{u^{10}}{10} .

All but the last summand of the indefinite integral evaluate to 0 at the integration limits as either the sine or the cosine is 0.

Therefore, evaluating the last term using the change of variable limits u - = sin ( 0 ) = 0 u_{\text{-}}=-\sin(0)=0 and u + = sin ( π 2 ) = 1 u_{\text{+}}=-\sin(\frac{\pi}{2})=-1 :

1 252 × 1 10 1 2520 -\frac{1}{252}\times-\frac{1}{10}\Rightarrow \frac{1}{2520}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...