Let it flow

Calculus Level 4

I'm thinking of a real number n n such that the flux of the vector field F ( x , y , z ) = ( x 2 + y 2 + z 2 ) n ( x , y , z ) \vec{F}(x,y,z)=(x^2+y^2+z^2)^n (x,y,z) through the surface ( x 2 ) 2 + ( y 3 ) 2 + ( z 4 ) 2 = 1 (x-2)^2+(y-3)^2+(z-4)^2=1 is 0. Find the sum of all possible values of n n .

(From a calculus exam I recently gave.)


The answer is -1.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Steven Chase
Nov 15, 2018

Recall the divergence theorem:

S F d S = V F d V \int \int_S \vec{F} \cdot \vec{dS} = \int \int \int_V \nabla \cdot \vec{F} \, dV

The divergence is (using the product rule and chain rule): F = ( x 2 + y 2 + z 2 ) n + 2 n x 2 ( x 2 + y 2 + z 2 ) n 1 + ( x 2 + y 2 + z 2 ) n + 2 n y 2 ( x 2 + y 2 + z 2 ) n 1 + ( x 2 + y 2 + z 2 ) n + 2 n z 2 ( x 2 + y 2 + z 2 ) n 1 = 3 ( x 2 + y 2 + z 2 ) n + 2 n ( x 2 + y 2 + z 2 ) ( x 2 + y 2 + z 2 ) n 1 = ( 3 + 2 n ) ( x 2 + y 2 + z 2 ) n \nabla \cdot \vec{F} = (x^2 + y^2 + z^2)^n + 2 n x^2 (x^2 + y^2 + z^2)^{n-1} + (x^2 + y^2 + z^2)^n + 2 n y^2 (x^2 + y^2 + z^2)^{n-1} + (x^2 + y^2 + z^2)^n + 2 n z^2 (x^2 + y^2 + z^2)^{n-1} \\ = 3(x^2 + y^2 + z^2)^n + 2 n (x^2 + y^2 + z^2) (x^2 + y^2 + z^2)^{n-1} \\ = ( 3 + 2 n) (x^2 + y^2 + z^2)^n

The divergence is globally zero when n = 3 2 n = - \frac{3}{2} . For this value of n n , the flux through the test surface is correspondingly zero. For other values of n n , the divergence is either always positive or always negative, and thus it will not integrate to zero in those cases.

Very nicely explained; thank you!

We might add that d i v ( F ) = ( 3 + 2 n ) ( x 2 + y 2 + z 2 ) n div(\vec{F})=(3+2n)(x^2+y^2+z^2)^n is either always positive or always negative when n 3 2 n\neq -\frac{3}{2} , so that the flux will be positive or negative, but never zero.

Otto Bretscher - 2 years, 6 months ago

Log in to reply

Yeah, that's what I tried to communicate in my last sentence, but not very eloquently. I will edit it to make it more readable.

Steven Chase - 2 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...