Let's add

( 2016 0 ) + ( 2016 4 ) + ( 2016 8 ) + + ( 2016 2016 ) = x + x 2 . \dbinom{2016}{0}+\dbinom{2016}{4}+\dbinom{2016}{8}+\cdots +\dbinom{2016}{2016} = x+x^2.

If x = a b x = a^b for positive integers a a and b b , find the smallest possible a + b a+b .


The answer is 1009.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Akeel Howell
Mar 5, 2017

Relevant wiki: Binomial Coefficient

( 2016 0 ) + ( 2016 4 ) + ( 2016 8 ) + + ( 2016 2016 ) = 2 2016 + ( 1 + i ) 2016 + ( 1 1 ) 2016 + ( 1 i ) 2016 4 = 2 2016 + 2 1008 ( cos 504 π + i sin 504 π ) + 2 1008 ( cos 504 π i sin 504 π ) 4 = 2 2016 + 2 1009 4 = 2 2014 + 2 1007 . 2 2014 = ( 2 1007 ) 2 x = 2 1007 = a b a = 2 , b = 1007 , a + b = 2 + 1007 = 1009 \dbinom{2016}{0}+\dbinom{2016}{4}+\dbinom{2016}{8}+\cdots+\dbinom{2016}{2016} \\ = \dfrac{2^{2016}+(1+i)^{2016}+(1-1)^{2016}+(1-i)^{2016}}{4} \\ = \dfrac{2^{2016}+2^{1008}(\cos{504\pi}+i\sin{504\pi})+2^{1008}(\cos{504\pi}-i\sin{504\pi})}{4} \\ = \dfrac{2^{2016}+2^{1009}}{4} = 2^{2014}+2^{1007}. \\ 2^{2014} = (2^{1007})^2 \quad \therefore x = 2^{1007} = a^b \\ \implies a = 2, b = 1007, \quad \therefore a+b = 2+1007 = \boxed{1009}

Chew-Seong Cheong
Mar 18, 2018

Relevant wiki: Binomial Theorem

Similar solution with @Akeel Howell 's

k = 0 2016 ( 2016 4 n ) = 1 4 k = 0 2016 ( 2016 k ) ( 1 k + i k + ( 1 ) k + ( i ) k ) Note that 1 k + i k + ( 1 ) k + ( i ) k = { 4 for k m o d 4 = 0 0 for k m o d 4 0 = 1 4 ( ( 1 + 1 ) 2016 + ( 1 + i ) 2016 + ( 1 1 ) 2016 + ( 1 i ) 2016 ) By binomial theorem = 1 4 ( 2 2016 + ( 2 i ) 1008 + 0 + ( 2 i ) 1008 ) Note that ( 1 + i ) 2 = 2 i and ( 1 i ) 2 = 2 i = 1 4 ( 2 2016 + 2 1008 i 4 × 252 + ( 2 ) 1008 i 4 × 252 ) Note that i 4 = 1 = 1 4 ( 2 2016 + 2 1008 + 2 1008 ) = 2 2 ( 2 2016 + 2 1009 ) = 2 2014 + 2 1007 \begin{aligned} \sum_{k=0}^{2016} \binom {2016}{4n} & = \frac 14 \sum_{k=0}^{2016} \binom {2016}k \left(1^k + i^k + (-1)^k + (-i)^k \right) & \small \color{#3D99F6} \text{Note that }1^k + i^k + (-1)^k + (-i)^k = \begin{cases} 4 \text{ for }k \bmod 4 = 0 \\ 0 \text{ for }k \bmod 4 \ne 0 \end{cases} \\ & = \frac 14 \left((1+1)^{2016} + (1+i)^{2016} + (1-1)^{2016} + (1-i)^{2016} \right) & \small \color{#3D99F6} \text{By binomial theorem} \\ & = \frac 14 \left(2^{2016} + (2i)^{1008} + 0 + (-2i)^{1008} \right) & \small \color{#3D99F6} \text{Note that }(1+i)^2 = 2i \text{ and }(1-i)^2 = -2i \\ & = \frac 14 \left(2^{2016} + 2^{1008}i^{4\times 252} + (-2)^{1008}i^{4\times 252} \right) & \small \color{#3D99F6} \text{Note that }i^4 = 1 \\ & = \frac 14 \left(2^{2016} + 2^{1008} + 2^{1008} \right) \\ & = 2^{-2} \left(2^{2016} + 2^{1009} \right) \\ & = 2^{2014} + 2^{1007} \end{aligned}

Therefore, x = 2 1007 a + b = 2 + 1007 = 1009 x=2^{1007} \implies a+b = 2+1007 = \boxed{1009} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...