Let's boycott Calculus this time! (Part 1)

Geometry Level 3

Find the sum of the maximum and minimum values of the expression cos 2 x + sin 4 x \cos^2x + \sin^4x for real x x .

Bonus : Do not use calculus.


Check out Part 2 , Part 3 .


The answer is 1.75.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chew-Seong Cheong
Aug 31, 2016

X = cos 2 x + sin 4 x = cos 2 x + ( 1 cos 2 x ) 2 = cos 4 x cos 2 x + 1 = cos 4 x cos 2 x + 1 4 + 3 4 = ( cos 2 x 1 2 ) 2 + 3 4 \begin{aligned} X & = \cos^2 x + \sin^4 x \\ & = \cos^2 x + \left(1-\cos^2 x\right)^2 \\ & = \cos^4 x - \cos^2 x + 1 \\ & = \color{#3D99F6}{\cos^4 x - \cos^2 x + \frac 14} + \frac 34 \\ & = \color{#3D99F6}{\left(\cos^2 x - \frac 12 \right)^2} + \frac 34 \end{aligned}

Since ( cos 2 x 1 2 ) 2 0 \left(\cos^2 x - \frac 12 \right)^2 \ge 0 , X 3 4 X \ge \frac 34 , X m i n = 3 4 X_{min} = \frac 34 , when cos 2 x = 1 2 \cos^2 x = \frac 12 which is valid.

X X is maximum, when ( cos 2 x 1 2 ) 2 \left(\cos^2 x - \frac 12 \right)^2 is maximum, that is when cos 2 x = 1 \cos^2 x = 1 , then we have:

X m a x = ( 1 1 2 ) 2 + 3 4 = 1 4 + 3 4 = 1 \begin{aligned} X_{max} & = \left(1 - \frac 12 \right)^2 + \frac 34 = \frac 14 + \frac 34 = 1 \end{aligned}

X m a x + X m i n = 1 + 3 4 = 1.75 \implies X_{max} + X_{min} = 1 + \dfrac 34 = \boxed{1.75}

cos 2 ( x ) + sin 4 ( x ) \cos^2(x) + \sin^4(x)

= 1 sin 2 ( x ) + sin 4 ( x ) =1 - \sin^2(x) + \sin^4(x)

= sin 2 ( x ) ( 1 sin 2 ( x ) ) + 1 =-\sin^2(x)(1-\sin^2(x)) + 1

= sin 2 ( x ) cos 2 ( x ) + 1 =-\sin^2(x)\cos^2(x) +1

= 4 sin 2 ( x ) cos 2 ( x ) 4 + 1 =- \frac{4 \sin^2(x)\cos^2(x)}{4} + 1

= [ 2 sin ( x ) cos ( x ) ] 2 4 + 1 =- \frac{[2 \sin(x)\cos(x)]^2}{4} + 1

= s i n 2 ( 2 x ) 4 + 1 =- \frac{sin^2(2x)}{4} + 1

Clearly, 1 s i n 2 ( 2 x ) 0 -1 \leqslant -sin^2(2x) \leqslant 0

1 4 s i n 2 ( 2 x ) 4 0 4 \implies -\frac{1}{4} \leqslant - \frac{sin^2(2x)}{4} \leqslant \frac{0}{4}

1 4 + 1 s i n 2 ( 2 x ) 4 + 1 0 + 1 \implies -\frac{1}{4} + 1 \leqslant - \frac{sin^2(2x)}{4} + 1 \leqslant 0+1

3 4 s i n 2 ( 2 x ) 4 + 1 1 \implies \boxed{\boxed{\frac{3}{4}} \leqslant - \frac{sin^2(2x)}{4} + 1 \leqslant \boxed{1}}

Hence, the sum of the maximum and minimum values = 3 4 + 1 = 7 4 = 1.75 = \frac{3}{4} + 1 = \frac{7}{4} = \boxed{1.75}

I am sure, you are a calculus Protester of Calculus. [Never Mind]

Md Zuhair - 4 years, 9 months ago

Log in to reply

Not exactly, but people are using only calculus to solve questions which can be done more creatively.

Arkajyoti Banerjee - 4 years, 9 months ago
Abhi Kumbale
Sep 7, 2016

convert everything to cos(2x)

Brevity is the soul of wit...... Great !

nishchith s - 4 years, 8 months ago

X = c o s 2 x + s i n 4 x = s i n 4 x s i n 2 x + 1 cos^2 x + sin^4 x = sin^4 x - sin^2 x + 1 . Let y = s i n 2 x , t h e n X = y 2 y + 1 = ( y 1 / 2 ) 2 + 3 / 4 y = sin^2 x, then X = y^2 - y + 1 = (y - 1/2)^2 + 3/4 . Now notice that 0 y 1 , s o 0 ( y 1 / 2 ) 2 1 / 4 a n d t h e r e f o r e 3 / 4 X 1 0 \leq y \leq 1, so 0 \leq (y - 1/2)^2 \leq 1/4 and therefore 3/4 \leq X \leq 1 . The answer is then 3/4 + 1 = 1.75.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...