This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
cos 2 ( x ) + sin 4 ( x )
= 1 − sin 2 ( x ) + sin 4 ( x )
= − sin 2 ( x ) ( 1 − sin 2 ( x ) ) + 1
= − sin 2 ( x ) cos 2 ( x ) + 1
= − 4 4 sin 2 ( x ) cos 2 ( x ) + 1
= − 4 [ 2 sin ( x ) cos ( x ) ] 2 + 1
= − 4 s i n 2 ( 2 x ) + 1
Clearly, − 1 ⩽ − s i n 2 ( 2 x ) ⩽ 0
⟹ − 4 1 ⩽ − 4 s i n 2 ( 2 x ) ⩽ 4 0
⟹ − 4 1 + 1 ⩽ − 4 s i n 2 ( 2 x ) + 1 ⩽ 0 + 1
⟹ 4 3 ⩽ − 4 s i n 2 ( 2 x ) + 1 ⩽ 1
Hence, the sum of the maximum and minimum values = 4 3 + 1 = 4 7 = 1 . 7 5
I am sure, you are a calculus Protester of Calculus. [Never Mind]
Log in to reply
Not exactly, but people are using only calculus to solve questions which can be done more creatively.
convert everything to cos(2x)
Brevity is the soul of wit...... Great !
X = c o s 2 x + s i n 4 x = s i n 4 x − s i n 2 x + 1 . Let y = s i n 2 x , t h e n X = y 2 − y + 1 = ( y − 1 / 2 ) 2 + 3 / 4 . Now notice that 0 ≤ y ≤ 1 , s o 0 ≤ ( y − 1 / 2 ) 2 ≤ 1 / 4 a n d t h e r e f o r e 3 / 4 ≤ X ≤ 1 . The answer is then 3/4 + 1 = 1.75.
Problem Loading...
Note Loading...
Set Loading...
X = cos 2 x + sin 4 x = cos 2 x + ( 1 − cos 2 x ) 2 = cos 4 x − cos 2 x + 1 = cos 4 x − cos 2 x + 4 1 + 4 3 = ( cos 2 x − 2 1 ) 2 + 4 3
Since ( cos 2 x − 2 1 ) 2 ≥ 0 , X ≥ 4 3 , X m i n = 4 3 , when cos 2 x = 2 1 which is valid.
X is maximum, when ( cos 2 x − 2 1 ) 2 is maximum, that is when cos 2 x = 1 , then we have:
X m a x = ( 1 − 2 1 ) 2 + 4 3 = 4 1 + 4 3 = 1
⟹ X m a x + X m i n = 1 + 4 3 = 1 . 7 5