Let's boycott Calculus this time! (Part 3)

Geometry Level 4

Find the maximum value of 1 sin 2 x + 3 sin x cos x + 5 cos 2 x \displaystyle \frac{1}{\sin^2x + 3\sin x \cos x +5\cos^2x} correct to 3 decimal places.

If you think that no maximum value exists but a minimum value does, then enter the minimum value. If you think that no global extrema exist for this function, then enter your answer as 666.


Try out Part 1 , Part 2 .


The answer is 2.000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

y = 1 sin 2 x + 3 sin x cos x + 5 cos 2 x As sin 2 x + cos 2 x = 1 = 1 1 + 3 sin x cos x + 4 cos 2 x = 1 1 + 3 2 ( 2 sin x cos x ) + 2 ( 2 cos 2 x 1 ) + 2 = 1 3 2 sin 2 x + 2 cos 2 x + 3 = 1 5 2 ( 3 5 sin 2 x + 4 5 cos 2 x ) + 3 = 1 5 2 sin ( 2 x + tan 1 4 3 ) + 3 \begin{aligned} y & = \frac 1{\color{#3D99F6}{\sin^2 x} + 3\sin x \cos x + 5\color{#3D99F6}{\cos^2 x}} & \small \color{#3D99F6}{\text{As }\sin^2 x + \cos^2 x = 1} \\ & = \frac 1{\color{#3D99F6}{1} + 3\sin x \cos x + {\color{#3D99F6}{4}\cos^2 x}} \\ & = \frac 1{1 + \frac 32 (\color{#3D99F6}{2\sin x \cos x}) + 2\color{#D61F06}{(2\cos^2 x - 1)} + 2} \\ & = \frac 1{\frac 32 \color{#3D99F6}{\sin 2x} + 2\color{#D61F06}{\cos 2x} + 3} \\ & = \frac 1{\frac 52 \left(\color{#3D99F6}{\frac 35} \sin 2x + \color{#3D99F6}{\frac 45} \cos 2x \right) + 3} \\ & = \frac 1{\frac 52 \sin \left(2x + \color{#3D99F6}{\tan^{-1} \frac 43} \right) + 3} \end{aligned}

We note that y y is maximum when the denominator 5 2 sin ( 2 x + tan 1 4 3 ) + 3 \frac 52 \color{#3D99F6}{\sin \left(2x + \tan^{-1} \frac 43 \right)} + 3 is minimum. The denominator is minimum when sin ( 2 x + tan 1 4 3 ) = 1 \color{#3D99F6}{\sin \left(2x + \tan^{-1} \frac 43 \right)} = -1 , the minimum.

y m a x = 1 5 2 ( 1 ) + 3 = 2 \begin{aligned} \implies y_{max} & = \frac 1{\frac 52 \left(\color{#3D99F6}{-1} \right) + 3} = \boxed{2} \end{aligned}

Let's handle the denominator of the function first:

= sin 2 x + 3 sin x cos x + 5 cos 2 x =\sin^2x + 3\sin x \cos x +5\cos^2x

= 1 cos 2 x + 1.5 ( 2 sin x cos x ) + 5 cos 2 x =1-\cos^2x + 1.5(2\sin x \cos x) +5\cos^2x

= 1.5 sin 2 x + 4 cos 2 x + 1 = 1.5 \sin 2x + 4 \cos^2x +1

= 1.5 sin 2 x + 4 cos 2 x 2 + 3 = 1.5 \sin 2x + 4 \cos^2x -2 +3

= 1.5 sin 2 x + 2 ( 2 cos 2 x 1 ) + 3 = 1.5 \sin 2x + 2(2 \cos^2x -1) +3

= 1.5 sin 2 x + 2 cos 2 x + 3 = 1.5 \sin 2x + 2 \cos 2x + 3

Clearly the function will have a maximum value when its denominator will be minimum and positive .

We know that for constants a a and b b , a 2 + b 2 a sin x + b cos x a 2 + b 2 -\sqrt{a^2 + b^2} \leqslant a \sin x + b \cos x \leqslant \sqrt{a^2 + b^2} is true. (Proof at the ending).

Hence, for our case, 1. 5 2 + 2 2 1.5 sin x + 2 cos x 1. 5 2 + 2 2 -\sqrt{1.5^2 + 2^2} \leqslant 1.5 \sin x + 2 \cos x \leqslant \sqrt{1.5^2 + 2^2}

6.25 + 3 1.5 sin x + 2 cos x + 3 6.25 + 3 \implies -\sqrt{6.25} + 3 \leqslant 1.5 \sin x + 2 \cos x + 3 \leqslant \sqrt{6.25} + 3 . 0.5 1.5 sin x + 2 cos x + 3 5.5 \implies 0.5 \leqslant 1.5 \sin x + 2 \cos x + 3 \leqslant 5.5 . 0.5 sin 2 x + 3 sin x cos x + 5 cos 2 x 5.5 \implies 0.5 \leqslant \sin^2x + 3\sin x \cos x +5\cos^2x \leqslant 5.5 .

Hence, it's minimum value is positive. Therefore the function 1 sin 2 x + 3 sin x cos x + 5 cos 2 x \displaystyle \frac{1}{\sin^2x + 3\sin x \cos x +5\cos^2x} will attain its maximum value when sin 2 x + 3 sin x cos x + 5 cos 2 x = 0.5 \sin^2x + 3\sin x \cos x +5\cos^2x = 0.5 . Hence substituting, the maximum value is 2 \boxed{2} .


PROOF for a 2 + b 2 a sin x + b cos x a 2 + b 2 -\sqrt{a^2 + b^2} \leqslant a \sin x + b \cos x \leqslant \sqrt{a^2 + b^2} :

Consider a right angled triangle with height a a and base b b and trigonometric angle y y . Then a a 2 + b 2 = sin y \frac{a}{\sqrt{a^2+b^2}} = \sin y and b a 2 + b 2 = cos y \frac{b}{\sqrt{a^2+b^2}} = \cos y .

Now, a sin x + b cos x = a 2 + b 2 [ a a 2 + b 2 sin x + b a 2 + b 2 cos x ] = a 2 + b 2 [ sin y sin x + cos y cos x ] = a 2 + b 2 cos ( x y ) a \sin x + b \cos x = \sqrt{a^2+b^2} [ \frac{a}{\sqrt{a^2+b^2}} \sin x + \frac{b}{\sqrt{a^2+b^2}} \cos x] = \sqrt{a^2+b^2} [ \sin y \sin x + \cos y \cos x] = \sqrt{a^2+b^2} \cos (x-y) .

We know that 1 cos ( x y ) 1 -1 \leqslant \cos (x-y) \leqslant 1 a 2 + b 2 a 2 + b 2 cos ( x y ) a 2 + b 2 \implies - \sqrt{a^2+b^2} \leqslant \sqrt{a^2+b^2} \cos (x-y) \leqslant \sqrt{a^2+b^2} [Since a 2 + b 2 \sqrt{a^2+b^2} is always positive]

a 2 + b 2 a sin x + b cos x a 2 + b 2 \implies \boxed{- \sqrt{a^2+b^2} \leqslant a \sin x + b \cos x \leqslant \sqrt{a^2+b^2}}


Question Source: IIT JEE Paper 2010 - Problem 48.

Nice approach :) (+1)

Arkajyoti Banerjee - 4 years, 9 months ago
Aastik Guru
Jun 11, 2020

I did using calculus. The denominator is simply 1 + 4 c o s 2 x + 3 s i n ( 2 x ) / 2. 1+4cos^2x+3sin(2x)/2. So we want denominator to be minimum.Just differentiate the denominator to get T a n 2 x = 3 / 4 Tan2x=3/4 Now it's minimum when s i n ( 2 x ) a n d c o s ( 2 x ) sin(2x) and cos(2x) are both negative. Proceed to get the final answer as 2.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...