Let's create an identity

Algebra Level 5

w = a 4 + b 4 + c 4 + d 4 x = a 2 + b 2 + c 2 + d 2 y = a b + a c + a d + b c + b d + c d z = a b c d \begin{aligned} w &=& { a }^{ 4 }+{ b }^{ 4 }+{ c }^{ 4 }+{ d }^{ 4 } \\ x &=& { a }^{ 2 }+b^{ 2 }+{ c }^{ 2 }+{ d }^{ 2 } \\ y &=& ab+ac+ad+bc+bd+cd \\ z &=& abcd \\ \end{aligned}

Let a , b , c a,b,c and d d be real numbers; and w , x , y w,x,y and z z some unknown constants such that they satisfy the system of equations above. State the following expression

( a + b + c + d ) ( a 3 + b 3 + c 3 + d 3 + a b c + a b d + b c d + a c d ) (a+b+c+d)({ a }^{ 3 }+{ b }^{ 3 }+{ c }^{ 3 }+{ d }^{ 3 }+abc+abd+bcd+acd)

in terms of w , x , y w,x,y and z z .

w x + y z w-x+yz ( w + x ) 3 y z { (w+x) }^{ 3 }-yz w + y x z 2 w+y-x{ z }^{ 2 } ( x + y 1 ) ( w z 2 ) (x+y-1)(w-{ z }^{ 2 }) 4 ( x y + w z ) 4(xy+wz) w + x y + 4 z w+xy+4z ( w + x + y + z ) 2 { (w+x+y+z) }^{ 2 } w x + ( y z ) 3 wx+({ y-z })^{ 3 }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Inderjeet Nair
Feb 21, 2015

First let us get acquainted to this identity.

a 4 + b 4 + c 4 + d 4 + ( a 2 + b 2 + c 2 + d 2 ) ( a b + a c + a d + b c + b d + c d ) + 4 a b c d = ( a + b + c + d ) ( a 3 + b 3 + c 3 + d 3 + a b c + a b d + b c d + a c d ) { a }^{ 4 }+{ b }^{ 4 }+{ c }^{ 4 }+{ d }^{ 4 }+({ a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 }+{ d }^{ 2 })(ab+ac+ad+bc+bd+cd)+4abcd=(a+b+c+d)({ a }^{ 3 }+{ b }^{ 3 }+{ c }^{ 3 }+{ d }^{ 3 }+abc+abd+bcd+acd)

Now just substitute the values of w,x,y and z to get the answer.

Now, how is this identity derived? Don't worry it's derivation is not as lengthy as the identity. Let p(x) be a biquadratic polynomial with a roots a,b,c and d

p ( x ) = x 4 ( a + b + c + d ) x 3 + ( a b + a c + a d + b c + b d + c d ) x 2 ( a b c + a b d + b c d + a c d ) x + a b c d \therefore \quad p(x)={ x }^{ 4 }-(a+b+c+d){ x }^{ 3 }+(ab+ac+ad+bc+bd+cd){ x }^{ 2 }-(abc+abd+bcd+acd)x+abcd

p ( a ) = a 4 ( a + b + c + d ) a 3 + ( a b + a c + a d + b c + b d + c d ) a 2 ( a b c + a b d + b c d + a c d ) a + a b c d = 0 \therefore \quad p(a)={ a }^{ 4 }-(a+b+c+d){ a }^{ 3 }+(ab+ac+ad+bc+bd+cd)a^{ 2 }-(abc+abd+bcd+acd)a+abcd=0

p ( b ) = b 4 ( a + b + c + d ) b 3 + ( a b + a c + a d + b c + b d + c d ) b 2 ( a b c + a b d + b c d + a c d ) b + a b c d = 0 \therefore \quad p(b)={ b }^{ 4 }-(a+b+c+d)b^{ 3 }+(ab+ac+ad+bc+bd+cd)b^{ 2 }-(abc+abd+bcd+acd)b+abcd=0

p ( c ) = c 4 ( a + b + c + d ) c 3 + ( a b + a c + a d + b c + b d + c d ) c 2 ( a b c + a b d + b c d + a c d ) c + a b c d = 0 \therefore \quad p(c)={ c }^{ 4 }-(a+b+c+d)c^{ 3 }+(ab+ac+ad+bc+bd+cd)c^{ 2 }-(abc+abd+bcd+acd)c+abcd=0

p ( d ) = d 4 ( a + b + c + d ) d 3 + ( a b + a c + a d + b c + b d + c d ) d 2 ( a b c + a b d + b c d + a c d ) d + a b c d = 0 \therefore \quad p(d)={ d }^{ 4 }-(a+b+c+d)d^{ 3 }+(ab+ac+ad+bc+bd+cd)d^{ 2 }-(abc+abd+bcd+acd)d+abcd=0

adding all the results yields the above identity.

Nice question !!

I must admit that I considered against solving this question when I first saw it , but once you open it up and re-arrange it, this question's easy .

A Former Brilliant Member - 6 years, 3 months ago

Or just call it newtons sums :)

Abhinav Raichur - 5 years, 11 months ago

For a shorter method try putting x = y = z = constant x=y=z=\text{constant} .

For example if we try x = y = z = 2 x=y=z=2 then only one options satisfiesand that is our answer

kritarth lohomi - 5 years, 9 months ago

Log in to reply

Even better if you put a = b = c = d = 1 a=b=c=d=1

Only one option satisfies this. This is what i call Objective Approach

Aditya Chauhan - 5 years, 9 months ago
Chew-Seong Cheong
Aug 24, 2015

Using Newton's sum, we have:

a 4 + b 4 + c 4 + d 4 = ( a + b + c + d ) ( a 3 + b 3 + c 3 + d 3 ) ( a b + a c + a d + b c + b d + c d ) ( a 2 + b 2 + c 2 + d 2 ) + ( a b c + a b d + a c d + b c d ) ( a + b + c + d ) 4 a b c d w = ( a + b + c + d ) ( a 3 + b 3 + c 3 + d 3 ) y x + ( a b c + a b d + a c d + b c d ) ( a + b + c + d ) 4 z \begin{aligned} a^4+b^4+c^4 +d^4 & = (a+b+c+d)(a^3+b^3+c^3 +d^3) \\ & \quad - (ab+ac+ad+bc+bd+cd )(a^2+b^2+c^2 +d^2) \\ & \quad + (abc+abd+acd+bcd)(a+b+c +d) - 4abcd \\ \Rightarrow w & = (a+b+c+d)(a^3+b^3+c^3 +d^3) - yx \\ & \quad + (abc+abd+acd+bcd)(a+b+c +d) - 4z \end{aligned}

( a + b + c + d ) ( a 3 + b 3 + c 3 + d 3 + a b c + a b d + a c d + b c d ) = w + x y + 4 z \Rightarrow (a+b+c+d)(a^3+b^3+c^3 +d^3 + abc+abd+acd+bcd) \\ \quad \quad =\boxed{w +xy + 4z}

Moderator note:

Yes. This is the standard Newton's Sum approach. Well done!

Let a n + b n + c n + d n = P n a^n+b^n+c^n+d^n=P_n , a + b + c + d = S 1 a+b+c+d=S_1 , a b + a c + a d + b c + b d + c d = S 2 ab+ac+ad+bc+bd+cd=S_2 , a b c + a b d + a c d + b c d = S 3 abc+abd+acd+bcd=S_3 and a b c d = S 4 abcd=S_4 . By Newton's Sums we know that:

P 1 = S 1 P 2 = S 1 2 2 S 2 P 3 = S 1 3 3 S 1 S 2 + 3 S 3 P 4 = S 1 4 4 S 1 2 S 2 + 4 S 1 S 3 + 2 S 2 2 4 S 4 P_1=S_1 \\ P_2=S_1^2-2S_2 \\ P_3=S_1^3-3S_1S_2+3S_3 \\ P_4=S_1^4-4S_1^2S_2+4S_1S_3+2S_2^2-4S_4

Then let A A the expression that we want, that is A = S 1 ( P 3 + S 3 ) A=S_1(P_3+S_3) . Substituting the values obtained we obtain: A = S 1 ( S 1 3 3 S 1 S 2 + 3 S 3 + S 3 ) = S 1 4 3 S 1 2 S 2 + 4 S 1 S 3 A=S_1(S_1^3-3S_1S_2+3S_3+S_3)=S_1^4-3S_1^2S_2+4S_1S_3 .

Now, substituting the given values we obtain:

x = S 1 2 2 y w = S 1 4 4 S 1 2 y + 4 S 1 S 3 + 2 y 2 4 z A = S 1 4 3 S 1 2 y + 4 S 1 S 3 x=S_1^2-2y \\ w=S_1^4-4S_1^2y+4S_1S_3+2y^2-4z \\ A=S_1^4-3S_1^2y+4S_1S_3

Now, subtract the third equation with the second one:

A w = S 1 2 y 2 y 2 + 4 z A-w=S_1^2y-2y^2+4z

Factor some terms and substitute the first equation:

A w = y ( S 1 2 2 y ) + 4 z A w = y ( x ) + 4 z A-w=y(S_1^2-2y)+4z \\ A-w=y(x)+4z

Finally, solve for A A :

A = w + x y + 4 z A=\boxed{w+xy+4z}

Moderator note:

Thanks for deriving the formula!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...