Let's do some calculus! (10)

Calculus Level 3

π 2 ln 3 7 6 5 6 sec ( π x ) d x = ? \large \dfrac{{\pi}^{2}}{\ln 3} \displaystyle \int_{\frac{7}{6}}^{\frac{5}{6}}{\sec(\pi x)} \,dx = \, ?


For more problems on calculus, click here .
π 4 \dfrac{\pi}{4} π 3 \dfrac{\pi}{3} π \pi π 6 \dfrac{\pi}{6}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Sep 20, 2016

I = π 2 ln 3 7 6 5 6 sec ( π x ) d x = π 2 ln 3 7 6 5 6 1 cos ( π x ) d x Let t = tan π x 2 , cos ( π x ) = 1 t 2 1 + t 2 , d x = 2 π ( 1 + t 2 ) d t = 2 π ln 3 tan 7 π 12 tan 5 π 12 1 1 t 2 d t Note that tan 7 π 12 = tan 5 π 12 = 2 π ln 3 tan 5 π 12 tan 5 π 12 1 ( 1 t ) ( 1 + t ) d t = π ln 3 tan 5 π 12 tan 5 π 12 ( 1 1 t + 1 1 + t ) d t = π ln 3 ( ln 1 t + ln 1 + t ) tan 5 π 12 tan 5 π 12 = π ln 3 ln ( tan 5 π 12 + 1 tan 5 π 12 1 ) 2 Note that tan 5 π 12 = 3 + 1 3 1 = π ln 3 ln ( 3 ) 2 = π ln 3 ln 3 = π \begin{aligned} I & = \frac {\pi^2}{\ln 3} \int_\frac 76 ^\frac 56 \sec (\pi x) \ dx \\ & = \frac {\pi^2}{\ln 3} \int_\frac 76 ^\frac 56 \frac 1{\cos (\pi x)} \ dx & \small \color{#3D99F6}{\text{Let }t = \tan \frac {\pi x}2, \ \cos (\pi x) = \frac {1-t^2}{1+t^2}, \ dx = \frac 2{\pi (1+t^2)} dt } \\ & = \frac {2 \pi}{\ln 3} \int_{\color{#3D99F6}{\tan \frac {7\pi}{12}}} ^{\tan \frac {5\pi}{12}} \frac 1{1-t^2} \ dt & \small \color{#3D99F6}{\text{Note that } \tan \frac {7\pi}{12} = - \tan \frac {5\pi}{12}} \\ & = \frac {2 \pi}{\ln 3} \int_{\color{#3D99F6}{- \tan \frac {5\pi}{12}}} ^{\tan \frac {5\pi}{12}} \frac 1{(1-t)(1+t)} \ dt \\ & = \frac {\pi}{\ln 3} \int_{-\tan \frac {5\pi}{12}} ^{\tan \frac {5\pi}{12}} \left( \frac 1{1-t} + \frac 1{1+t} \right) dt \\ & = \frac {\pi}{\ln 3} \left( -\ln |1-t| + \ln |1+t| \right)\bigg|_{-\tan \frac {5\pi}{12}} ^{\tan \frac {5\pi}{12}} \\ & = \frac {\pi}{\ln 3} \ln \left( \frac {\tan \frac {5\pi}{12}+1}{\tan \frac {5\pi}{12}-1} \right)^2 & \small \color{#3D99F6}{\text{Note that } \tan \frac {5\pi}{12} = \frac {\sqrt 3+1}{\sqrt 3-1}} \\ & = \frac {\pi}{\ln 3} \ln (\sqrt 3)^2 = \frac {\pi}{\ln 3} \ln 3 = \boxed{\pi} \end{aligned}

Tapas Mazumdar
Sep 19, 2016

Let

I = π 2 ln 3 7 6 5 6 sec ( π x ) d x = π 2 ln 3 ( ln sec π x + tan π x 7 / 6 5 / 6 π ) = π ln 3 ( ln sec 5 π 6 + tan 5 π 6 ln sec 7 π 6 + tan 7 π 6 ) = π ln 3 ( ln 3 ) = π \begin{aligned} I & = \dfrac{{\pi}^{2}}{\ln 3} \displaystyle \int_{\frac{7}{6}}^{\frac{5}{6}}{\sec(\pi x)} \,dx \\ & = \dfrac{{\pi}^{2}}{\ln 3} \left(\dfrac{\ln {\left| \sec \pi x + \tan \pi x \right|}_{{7}/{6}}^{{5}/{6}}}{\pi}\right) \\ & = \dfrac{\pi}{\ln 3} \left(\ln {\left| \sec \dfrac{5\pi}{6} + \tan \dfrac{5\pi}{6} \right|} - \ln {\left| \sec \dfrac{7\pi}{6} + \tan \dfrac{7\pi}{6} \right|} \right) \\ & = \dfrac{\pi}{\ln 3} \left(\ln 3\right) \\ & = \boxed{\pi} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...