Let's do some calculus! (12)

Calculus Level 4

Given that y = a x 2 ( x a ) ( x b ) ( x c ) + b x ( x b ) ( x c ) + c x c + 1 y= \dfrac{ax^{2}}{(x-a)(x-b)(x-c)} + \dfrac{bx}{(x-b)(x-c)} + \dfrac{c}{x-c} + 1

Find y y \dfrac{y'}{y} .

Notation: y y' denotes the first derivative of y y .


For more problems on calculus, click here .
1 x ( a a x + b b x + c c x ) \dfrac{1}{x} \left( \dfrac{a}{a-x} + \dfrac{b}{b-x} + \dfrac{c}{c-x} \right) 1 a b c 1 x ( a a x + b b x + c c x ) \dfrac{1}{abc}\cdot\dfrac{1}{x} \left( \dfrac{a}{a-x} + \dfrac{b}{b-x} + \dfrac{c}{c-x} \right) 1 x ( a a + x + b b + x + c c + x ) \dfrac{1}{x} \left( \dfrac{a}{a+x} + \dfrac{b}{b+x} + \dfrac{c}{c+x} \right) 1 a b c 1 x ( a a + x + b b + x + c c + x ) \dfrac{1}{abc}\cdot\dfrac{1}{x} \left( \dfrac{a}{a+x} + \dfrac{b}{b+x} + \dfrac{c}{c+x} \right)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Simple simlification shows y = x 3 ( x a ) ( x b ) ( x c ) \displaystyle y=\frac{x^3}{(x-a)(x-b)(x-c)} , now differentiating we have y y = 3 x 1 x a 1 x b 1 x c = 1 x ( a a x + b b x + c c x ) \displaystyle \frac{y'}{y}=\frac{3}{x}-\frac{1}{x-a}-\frac{1}{x-b}-\frac{1}{x-c}=\frac{1}{x}(\frac{a}{a-x}+\frac{b}{b-x}+\frac{c}{c-x})

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...