Let's do some calculus! (13)

Calculus Level 3

f ( x ) = { sin x x , for x 0 0 , for x = 0 f(x) = \begin{cases} \dfrac{\sin \left \lfloor x \right \rfloor}{\left \lfloor x \right \rfloor}, & \text{for} & \left \lfloor x \right \rfloor \neq 0 \\ \\ 0, & \text{for} & \left \lfloor x \right \rfloor = 0 \end{cases}

If f ( x ) f(x) is as defined above, find lim x 0 f ( x ) \displaystyle \lim_{x \to 0^{-}}{f(x)} .

Notation: \lfloor \cdot \rfloor denotes the floor function .


For more problems on calculus, click here .
sin 1 \sin 1 0 0 1 1 sin 1 \sin 1^{\circ}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Sep 21, 2016

lim x 0 f ( x ) = lim x 0 sin x x Note that lim x 0 x = 1 = sin ( 1 ) 1 = sin 1 1 = sin 1 \begin{aligned} \lim_{x \to 0^-} f(x) & = \lim_{x \to 0^-} \frac {\sin \lfloor x \rfloor}{\lfloor x \rfloor} & \small \color{#3D99F6}{\text{Note that }\lim_{x \to 0^-} \lfloor x \rfloor = -1 } \\ & = \frac {\sin (-1)}{-1} = \frac {- \sin 1}{-1} = \boxed{\sin 1} \end{aligned}

Here you need to clarify the floor function. It is commonly used in Brilliant as floor function and not GIF. The link will clarify that.

Chew-Seong Cheong - 4 years, 8 months ago

Log in to reply

Okay. Thanks. :)

Tapas Mazumdar - 4 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...