Let's do some calculus! (15)

Calculus Level 3

e x 2 π d x e i π = ? \large \displaystyle \int_{-\infty}^{\infty}{\dfrac{e^{-x^{2}}}{\sqrt{\pi}}} \,dx - e^{i \pi} = ~ ?

Notations:


For more problems on calculus, click here .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Consider the Gaussian integral I = e x 2 d x \displaystyle I=\int_{-\infty}^{\infty} e^{-x^2} dx , For this being an even function and symmetric over the line x = 0 x=0 we consider I = 2 0 e x 2 d x \displaystyle I=2\int_{0}^{\infty}e^{-x^2}dx and hence set x 2 = u x^2=u that makes I = 0 e u u d u = Γ ( 1 2 ) = π \displaystyle I=\int_{0}^{\infty} \frac{e^{-u}}{\sqrt{u}}du = \Gamma(\frac{1}{2})=\sqrt{\pi} which completes the derivation.

We know by Euler's formula that , e i π + 1 = 0 \displaystyle e^{i\pi}+1=0 and so the given expression equals 2 \boxed{2}

Then e i π e ^ { i \pi } equals to 1 1 ?

. . - 3 months, 4 weeks ago
Chew-Seong Cheong
Sep 21, 2016

Relevant wiki: Integration Tricks

Consider the Gaussian integral I = 0 e x 2 d x I = \displaystyle \int_0^\infty e^{-x^2} dx . It can be solved using the following identity involving polar integral (right).

I 2 = 0 0 e x 2 e y 2 d y d x = 0 π 2 0 r e r 2 d r d θ I^2 = \int_0^\infty \int_0^\infty e^{-x^2}e^{-y^2} \ dy \ dx = \int_0^\frac \pi 2 \int_0^\infty re^{-r^2} \ dr \ d\theta

I 2 = 0 π 2 0 r e r 2 d r d θ = 0 π 2 e r 2 2 0 d θ = 1 2 0 π 2 d θ = π 4 I = π 2 \begin{aligned} I^2 & = \int_0^\frac \pi 2 \int_0^\infty re^{-r^2} \ dr \ d\theta = \int_0^\frac \pi 2 \frac {e^{-r^2}}2\bigg|_\infty^0 \ d\theta = \frac 12 \int_0^\frac \pi 2 \ d \theta = \frac \pi 4 \\ \implies I & = \frac {\sqrt \pi}2 \end{aligned}

Now, we have:

X = 1 π e x 2 d x e i π As the integrand is even = 1 π 2 I ( cos π + i sin π ) = 1 π π ( 1 + 0 ) = 2 \begin{aligned} X & = \frac 1{\sqrt \pi} \color{#3D99F6}{\int_{-\infty}^\infty e^{-x^2} dx} - e^{i\pi} & \small \color{#3D99F6}{\text{As the integrand is even}} \\ & = \frac 1{\sqrt \pi} \cdot \color{#3D99F6}{2I} - (\cos \pi + i \sin \pi) \\ & = \frac 1{\sqrt \pi} \cdot \color{#3D99F6}{\sqrt \pi} - (-1 + 0) \\ & = \boxed{2} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...