If . Then find the value of .
Notation: denotes the derivative of at .
Inspiration: You Derive Me Crazy by Mr. Pi Han Goh . (Let's set sir!)
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let f ( 0 ) = x x x . We can find the first derivative by taking the natural log on both sides, i.e. l n ( f ( 0 ) ) = l n ( x x x ) = x x l n ( x )
If we let g ( 0 ) = x x l n ( x ) and using the chain rule we have f ( 0 ) f ( 1 ) = d x d g ( 0 ) , i.e. f ( 1 ) = f ( 0 ) g ( 1 )
If we also let y ( 0 ) = x x and z ( 0 ) = l n ( x ) then we can see that g ( 0 ) = y ( 0 ) z ( 0 ) . Furthermore, we can find the first derivative of y ( 0 ) by again taking the natural log on both sides and using the chain rule. Thus l n ( y ( 0 ) ) = l n ( x x ) = x l n ( x ) . i.e. y ( 0 ) y ( 1 ) = d x d x l n ( x ) = x × x 1 + l n ( x ) = 1 + z ( 0 ) , i.e. y ( 1 ) = y ( 0 ) ( 1 + z ( 0 ) )
So we can see that all of the derivatives of f ( 0 ) are dependent on higher derivatives and derivatives of z ( 0 ) . So the first 7 derivatives of z ( 0 ) are z ( 0 ) = l n ( x ) , z ( 1 ) = x 1 , z ( 2 ) = − x 2 1 , z ( 3 ) = x 3 2 , z ( 4 ) = − x 4 6 , z ( 5 ) = x 5 2 4 , z ( 6 ) = − x 6 1 2 0 and z ( 7 ) = x 7 7 2 0 .
And letting x = 1 gives z ( 0 ) ( 1 ) = 0 , z ( 1 ) ( 1 ) = 1 , z ( 2 ) ( 1 ) = − 1 , z ( 3 ) ( 1 ) = 2 , z ( 4 ) ( 1 ) = − 6 , z ( 5 ) ( 1 ) = 2 4 , z ( 6 ) ( 1 ) = − 1 2 0 and z ( 7 ) ( 1 ) = 7 2 0 .
Now we can get the derivatives of y ( 0 ) :
y ( 0 ) ( 1 ) = 1 1 = 1
y ( 1 ) ( 1 ) = y ( 0 ) ( 1 ) ( 1 + z ( 0 ) ( 1 ) ) = 1 × ( 1 + 0 ) = 1
y ( 2 ) ( 1 ) = y ( 1 ) ( 1 ) ( 1 + z ( 0 ) ( 1 ) ) + y ( 0 ) ( 1 ) z 1 ( 1 ) = 1 × ( 1 + 0 ) + 1 × 1 = 2
y ( 3 ) ( 1 ) = y ( 2 ) ( 1 ) ( 1 + z ( 0 ) ( 1 ) ) + 2 y ( 1 ) ( 1 ) z ( 1 ) ( 1 ) + y ( 0 ) ( 1 ) z ( 2 ) ( 1 ) = 2 × ( 1 + 0 ) + 2 × 1 × 1 + 1 × − 1 = 3
y ( 4 ) ( 1 ) = y ( 3 ) ( 1 ) ( 1 + z ( 0 ) ( 1 ) ) + 3 y ( 2 ) ( 1 ) z ( 1 ) ( 1 ) + 3 y ( 1 ) ( 1 ) z ( 2 ) ( 1 ) + y ( 0 ) ( 1 ) z ( 3 ) ( 1 ) = 3 × ( 1 + 0 ) + 3 × 2 × 1 + 3 × 1 × − 1 + 1 × 2 = 8
y ( 5 ) ( 1 ) = y ( 4 ) ( 1 ) ( 1 + z ( 0 ) ( 1 ) ) + 4 y ( 3 ) ( 1 ) z ( 1 ) ( 1 ) + 6 y ( 2 ) ( 1 ) z ( 2 ) ( 1 ) + 4 y ( 1 ) ( 1 ) z ( 3 ) ( 1 ) + y ( 0 ) ( 1 ) z ( 4 ) ( 1 ) = 8 × ( 1 + 0 ) + 4 × 3 × 1 + 6 × 2 × − 1 + 4 × 1 × 2 + 1 × − 6 = 1 0
y ( 6 ) ( 1 ) = y ( 5 ) ( 1 ) ( 1 + z ( 0 ) ( 1 ) ) + 5 y ( 4 ) ( 1 ) z ( 1 ) ( 1 ) + 1 0 y ( 3 ) ( 1 ) z ( 2 ) ( 1 ) + 1 0 y ( 2 ) ( 1 ) z ( 3 ) ( 1 ) + 5 y ( 1 ) ( 1 ) z ( 4 ) ( 1 ) + y ( 0 ) ( 1 ) z ( 5 ) ( 1 ) = 1 0 × ( 1 + 0 ) + 5 × 8 × 1 + 1 0 × 3 × − 1 + 1 0 × 2 × 2 + 5 × 1 × − 6 + 1 × 2 4 = 5 4
y ( 7 ) ( 1 ) = y ( 6 ) ( 1 ) ( 1 + z ( 0 ) ( 1 ) ) + 6 y ( 5 ) ( 1 ) z ( 1 ) ( 1 ) + 1 5 y ( 4 ) ( 1 ) z ( 2 ) ( 1 ) + 2 0 y ( 3 ) ( 1 ) z ( 3 ) ( 1 ) + 1 5 y ( 2 ) ( 1 ) z ( 4 ) ( 1 ) + 6 y ( 1 ) ( 1 ) z ( 5 ) ( 1 ) + y ( 0 ) ( 1 ) z ( 6 ) ( 1 ) = 5 4 × ( 1 + 0 ) + 6 × 1 0 × 1 + 1 5 × 8 × − 1 + 2 0 × 3 × 2 + 1 5 × 2 × − 6 + 6 × 1 × 2 4 + 1 × − 1 2 0 = − 4 2
And now for g ( 0 ) : g ( 0 ) ( 1 ) = y ( 0 ) ( 1 ) z ( 0 ) ( 1 ) = 1 × 0 = 0
g ( 1 ) ( 1 ) = y ( 1 ) ( 1 ) z ( 0 ) ( 1 ) + y ( 0 ) ( 1 ) z ( 1 ) ( 1 ) = 1 × 0 + 1 × 1 = 1
g ( 2 ) ( 1 ) = y ( 2 ) ( 1 ) z ( 0 ) ( 1 ) + 2 y ( 1 ) ( 1 ) z ( 1 ) ( 1 ) + y ( 0 ) ( 1 ) z ( 2 ) ( 1 ) = 2 × 0 + 2 × 1 × 1 + 1 × − 1 = 1
g ( 3 ) ( 1 ) = y ( 3 ) ( 1 ) z ( 0 ) ( 1 ) + 3 y ( 2 ) ( 1 ) z ( 1 ) ( 1 ) + 3 y ( 1 ) ( 1 ) z ( 2 ) ( 1 ) + y ( 0 ) ( 1 ) z ( 3 ) ( 1 ) = 3 × 0 + 3 × 2 × 1 + 3 × 1 × − 1 + 1 × 2 = 5
g ( 4 ) ( 1 ) = y ( 4 ) ( 1 ) z ( 0 ) ( 1 ) + 4 y ( 3 ) ( 1 ) z ( 1 ) ( 1 ) + 6 y ( 2 ) ( 1 ) z ( 2 ) ( 1 ) + 4 y ( 1 ) ( 1 ) z ( 3 ) ( 1 ) + y ( 0 ) ( 1 ) z ( 4 ) ( 1 ) = 8 × 0 + 4 × 3 × 1 + 6 × 2 × − 1 + 4 × 1 × 2 + 1 × − 6 = 2
g ( 5 ) ( 1 ) = y ( 5 ) ( 1 ) z ( 0 ) ( 1 ) + 5 y ( 4 ) ( 1 ) z ( 1 ) ( 1 ) + 1 0 y ( 3 ) ( 1 ) z ( 2 ) ( 1 ) + 1 0 y ( 2 ) ( 1 ) z ( 3 ) ( 1 ) + 5 y ( 1 ) ( 1 ) z ( 4 ) ( 1 ) + y ( 0 ) ( 1 ) z ( 5 ) ( 1 ) = 1 0 × 0 + 5 × 8 × 1 + 1 0 × 3 × − 1 + 1 0 × 2 × 2 + 5 × 1 × − 6 + 1 × 2 4 = 4 4
g ( 6 ) ( 1 ) = y ( 6 ) ( 1 ) z ( 0 ) ( 1 ) + 6 y ( 5 ) ( 1 ) z ( 1 ) ( 1 ) + 1 5 y ( 4 ) ( 1 ) z ( 2 ) ( 1 ) + 2 0 y ( 3 ) ( 1 ) z ( 3 ) ( 1 ) + 1 5 y ( 2 ) ( 1 ) z ( 4 ) ( 1 ) + 6 y ( 1 ) ( 1 ) z ( 5 ) ( 1 ) + y ( 0 ) ( 1 ) z ( 6 ) ( 1 ) = 5 4 × 0 + 6 × 1 0 × 1 + 1 5 × 8 × − 1 + 2 0 × 3 × 2 + 1 5 × 2 × − 6 + 6 × 1 × 2 4 + 1 × − 1 2 0 = − 9 6
g ( 7 ) ( 1 ) = y ( 7 ) ( 1 ) z ( 0 ) ( 1 ) + 7 y ( 6 ) ( 1 ) z ( 1 ) ( 1 ) + 2 1 y ( 5 ) ( 1 ) z ( 2 ) ( 1 ) + 3 5 y ( 4 ) ( 1 ) z ( 3 ) ( 1 ) + 3 5 y ( 3 ) ( 1 ) z ( 4 ) ( 1 ) + 2 1 y ( 2 ) ( 1 ) z ( 5 ) ( 1 ) + 7 y ( 1 ) ( 1 ) z ( 6 ) ( 1 ) + y ( 0 ) ( 1 ) z ( 7 ) ( 1 ) = − 4 2 × 0 + 7 × 5 4 × 1 + 2 1 × 1 0 × − 1 + 3 5 × 8 × 2 + 3 5 × 3 × − 6 + 2 1 × 2 × 2 4 + 7 × 1 × − 1 2 0 + 1 × 7 2 0 = 9 8 6
And so we can now solve for f ( 7 ) ( 1 ) :
f ( 1 ) ( 1 ) = f ( 0 ) ( 1 ) g ( 1 ) ( 1 ) = 1 × 1 = 1
f ( 2 ) ( 1 ) = f ( 1 ) ( 1 ) g ( 1 ) ( 1 ) + f ( 0 ) ( 1 ) g ( 2 ) ( 1 ) = 1 × 1 + 1 × 1 = 2
f ( 3 ) ( 1 ) = f ( 2 ) ( 1 ) g ( 1 ) ( 1 ) + 2 f ( 1 ) ( 1 ) g ( 2 ) ( 1 ) + f ( 0 ) ( 1 ) g ( 3 ) ( 1 ) = 2 × 1 + 2 × 1 × 1 + 1 × 5 = 9
f ( 4 ) ( 1 ) = f ( 3 ) ( 1 ) g ( 1 ) ( 1 ) + 3 f 2 ( 1 ) g 2 ( 1 ) + 3 f ( 1 ) ( 1 ) g ( 3 ) ( 1 ) + f ( 0 ) ( 1 ) g ( 4 ) ( 1 ) = 9 × 1 + 3 × 2 × 1 + 3 × 1 × 5 + 1 × 2 = 3 2
f ( 5 ) ( 1 ) = f ( 4 ) ( 1 ) g ( 1 ) ( 1 ) + 4 f ( 3 ) ( 1 ) g ( 2 ) ( 1 ) + 6 f ( 2 ) ( 1 ) g ( 3 ) ( 1 ) + 4 f ( 1 ) ( 1 ) g ( 4 ) ( 1 ) + f ( 0 ) ( 1 ) g ( 5 ) ( 1 ) = 3 2 × 1 + 4 × 9 × 1 + 6 × 2 × 5 + 4 × 1 × 2 + 1 × 4 4 = 1 8 0
f ( 6 ) ( 1 ) = f ( 5 ) ( 1 ) g ( 1 ) ( 1 ) + 5 f ( 4 ) ( 1 ) g ( 2 ) ( 1 ) + 1 0 f ( 3 ) ( 1 ) g ( 3 ) ( 1 ) + 1 0 f ( 2 ) ( 1 ) g ( 4 ) ( 1 ) + 5 f ( 1 ) ( 1 ) g ( 5 ) ( 1 ) + f ( 0 ) ( 1 ) g ( 6 ) ( 1 ) = 1 8 0 × 1 + 5 × 3 2 × 1 + 1 0 × 9 × 5 + 1 0 × 2 × 2 + 5 × 1 × 4 4 + 1 × − 9 6 = 9 5 4
f ( 7 ) ( 1 ) = f ( 6 ) ( 1 ) g ( 1 ) ( 1 ) + 6 f ( 5 ) ( 1 ) g ( 2 ) ( 1 ) + 1 5 f ( 4 ) ( 1 ) g ( 3 ) ( 1 ) + 2 0 f ( 3 ) ( 1 ) g ( 4 ) ( 1 ) + 1 5 f ( 2 ) ( 1 ) g ( 5 ) ( 1 ) + 6 f ( 1 ) ( 1 ) g ( 6 ) ( 1 ) + f ( 0 ) ( 1 ) g ( 7 ) ( 1 ) = 9 5 4 × 1 + 6 × 1 8 0 × 1 + 1 5 × 3 2 × 5 + 2 0 × 9 × 2 + 1 5 × 2 × 4 4 + 6 × 1 × − 9 6 + 1 × 9 8 6 = 6 5 2 4
Am sure there is a way to simplify this solution by proving that g ( n ) = y ( n + 1 ) − y ( n ) , but I couldn't figure out how to do that. If you can work it out, please let me know!