Let's do some calculus! (17)

Calculus Level 5

If f ( x ) = x x x f(x) = x^{x^{x}} . Then find the value of f 7 ( 1 ) f^{7}(1) .

Notation: f n ( a ) f^{n}(a) denotes the n t h n^{th} derivative of f ( x ) f(x) at x = a x=a .


Inspiration: You Derive Me Crazy by Mr. Pi Han Goh . (Let's set n = 7 n = 7 sir!)

For more problems on calculus, click here .


The answer is 6524.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Nick Ryan
Sep 25, 2016

Let f ( 0 ) = x x x f^{(0)}=x^{x^x} . We can find the first derivative by taking the natural log on both sides, i.e. l n ( f ( 0 ) ) = l n ( x x x ) = x x l n ( x ) ln(f^{(0)})=ln(x^{x^x})=x^xln(x)

If we let g ( 0 ) = x x l n ( x ) g^{(0)}=x^xln(x) and using the chain rule we have f ( 1 ) f ( 0 ) = d d x g ( 0 ) \frac{f^{(1)}}{f^{(0)}}=\frac{d}{dx}g^{(0)} , i.e. f ( 1 ) = f ( 0 ) g ( 1 ) f^{(1)}=f^{(0)}g^{(1)}

If we also let y ( 0 ) = x x y^{(0)}=x^x and z ( 0 ) = l n ( x ) z^{(0)}=ln(x) then we can see that g ( 0 ) = y ( 0 ) z ( 0 ) g^{(0)}=y^{(0)}z^{(0)} . Furthermore, we can find the first derivative of y ( 0 ) y^{(0)} by again taking the natural log on both sides and using the chain rule. Thus l n ( y ( 0 ) ) = l n ( x x ) = x l n ( x ) ln(y^{(0)})=ln(x^x)=xln(x) . i.e. y ( 1 ) y ( 0 ) = d d x x l n ( x ) = x × 1 x + l n ( x ) = 1 + z ( 0 ) \frac{y^{(1)}}{y^{(0)}}=\frac{d}{dx}xln(x)=x×\frac{1}{x}+ln(x)=1+z^{(0)} , i.e. y ( 1 ) = y ( 0 ) ( 1 + z ( 0 ) ) y^{(1)}=y^{(0)}(1+z^{(0)})

So we can see that all of the derivatives of f ( 0 ) f^{(0)} are dependent on higher derivatives and derivatives of z ( 0 ) z^{(0)} . So the first 7 derivatives of z ( 0 ) z^{(0)} are z ( 0 ) = l n ( x ) z^{(0)}=ln(x) , z ( 1 ) = 1 x z^{(1)}=\frac{1}{x} , z ( 2 ) = 1 x 2 z^{(2)}=-\frac{1}{x^2} , z ( 3 ) = 2 x 3 z^{(3)}=\frac{2}{x^3} , z ( 4 ) = 6 x 4 z^{(4)}=-\frac{6}{x^4} , z ( 5 ) = 24 x 5 z^{(5)}=\frac{24}{x^5} , z ( 6 ) = 120 x 6 z^{(6)}=-\frac{120}{x^6} and z ( 7 ) = 720 x 7 z^{(7)}=\frac{720}{x^7} .

And letting x = 1 x=1 gives z ( 0 ) ( 1 ) = 0 z^{(0)}(1)=0 , z ( 1 ) ( 1 ) = 1 z^{(1)}(1)=1 , z ( 2 ) ( 1 ) = 1 z^{(2)}(1)=-1 , z ( 3 ) ( 1 ) = 2 z^{(3)}(1)=2 , z ( 4 ) ( 1 ) = 6 z^{(4)}(1)=-6 , z ( 5 ) ( 1 ) = 24 z^{(5)}(1)=24 , z ( 6 ) ( 1 ) = 120 z^{(6)}(1)=-120 and z ( 7 ) ( 1 ) = 720 z^{(7)}(1)=720 .

Now we can get the derivatives of y ( 0 ) y^{(0)} :

y ( 0 ) ( 1 ) = 1 1 = 1 y^{(0)}(1)=1^1=1

y ( 1 ) ( 1 ) = y ( 0 ) ( 1 ) ( 1 + z ( 0 ) ( 1 ) ) y^{(1)}(1)=y^{(0)}(1)(1+z^{(0)}(1)) = 1 × ( 1 + 0 ) = 1 =1×(1+0)=1

y ( 2 ) ( 1 ) = y ( 1 ) ( 1 ) ( 1 + z ( 0 ) ( 1 ) ) + y ( 0 ) ( 1 ) z 1 ( 1 ) = y^{(2)}(1)=y^{(1)}(1)(1+z^{(0)}(1))+y^{(0)}(1)z^{1}(1)= 1 × ( 1 + 0 ) + 1 × 1 = 2 1×(1+0)+1×1=2

y ( 3 ) ( 1 ) = y ( 2 ) ( 1 ) ( 1 + z ( 0 ) ( 1 ) ) + 2 y ( 1 ) ( 1 ) z ( 1 ) ( 1 ) + y ( 0 ) ( 1 ) z ( 2 ) ( 1 ) y^{(3)}(1)=y^{(2)}(1)(1+z^{(0)}(1))+2y^{(1)}(1)z^{(1)}(1)+y^{(0)}(1)z^{(2)}(1) = 2 × ( 1 + 0 ) + 2 × 1 × 1 + 1 × 1 = 3 =2×(1+0)+2×1×1+1×-1=3

y ( 4 ) ( 1 ) = y ( 3 ) ( 1 ) ( 1 + z ( 0 ) ( 1 ) ) + 3 y ( 2 ) ( 1 ) z ( 1 ) ( 1 ) + 3 y ( 1 ) ( 1 ) z ( 2 ) ( 1 ) + y ( 0 ) ( 1 ) z ( 3 ) ( 1 ) y^{(4)}(1)=y^{(3)}(1)(1+z^{(0)}(1))+3y^{(2)}(1)z^{(1)}(1)+3y^{(1)}(1)z^{(2)}(1)+y^{(0)}(1)z^{(3)}(1) = 3 × ( 1 + 0 ) + 3 × 2 × 1 + 3 × 1 × 1 + 1 × 2 =3×(1+0)+3×2×1+3×1×-1+1×2 = 8 =8

y ( 5 ) ( 1 ) = y ( 4 ) ( 1 ) ( 1 + z ( 0 ) ( 1 ) ) + 4 y ( 3 ) ( 1 ) z ( 1 ) ( 1 ) + 6 y ( 2 ) ( 1 ) z ( 2 ) ( 1 ) + 4 y ( 1 ) ( 1 ) z ( 3 ) ( 1 ) + y ( 0 ) ( 1 ) z ( 4 ) ( 1 ) y^{(5)}(1)=y^{(4)}(1)(1+z^{(0)}(1))+4y^{(3)}(1)z^{(1)}(1)+6y^{(2)}(1)z^{(2)}(1)+4y^{(1)}(1)z^{(3)}(1)+y^{(0)}(1)z^{(4)}(1) = 8 × ( 1 + 0 ) + 4 × 3 × 1 + 6 × 2 × 1 + 4 × 1 × 2 + 1 × 6 =8×(1+0)+4×3×1+6×2×-1+4×1×2+1×-6 = 10 =10

y ( 6 ) ( 1 ) = y ( 5 ) ( 1 ) ( 1 + z ( 0 ) ( 1 ) ) + 5 y ( 4 ) ( 1 ) z ( 1 ) ( 1 ) + 10 y ( 3 ) ( 1 ) z ( 2 ) ( 1 ) + 10 y ( 2 ) ( 1 ) z ( 3 ) ( 1 ) + 5 y ( 1 ) ( 1 ) z ( 4 ) ( 1 ) + y ( 0 ) ( 1 ) z ( 5 ) ( 1 ) y^{(6)}(1)=y^{(5)}(1)(1+z^{(0)}(1))+5y^{(4)}(1)z^{(1)}(1)+10y^{(3)}(1)z^{(2)}(1)+10y^{(2)}(1)z^{(3)}(1)+5y^{(1)}(1)z^{(4)}(1)+y^{(0)}(1)z^{(5)}(1) = 10 × ( 1 + 0 ) + 5 × 8 × 1 + 10 × 3 × 1 + 10 × 2 × 2 + 5 × 1 × 6 + 1 × 24 =10×(1+0)+5×8×1+10×3×-1+10×2×2+5×1×-6+1×24 = 54 =54

y ( 7 ) ( 1 ) = y ( 6 ) ( 1 ) ( 1 + z ( 0 ) ( 1 ) ) + 6 y ( 5 ) ( 1 ) z ( 1 ) ( 1 ) + 15 y ( 4 ) ( 1 ) z ( 2 ) ( 1 ) + 20 y ( 3 ) ( 1 ) z ( 3 ) ( 1 ) + 15 y ( 2 ) ( 1 ) z ( 4 ) ( 1 ) + 6 y ( 1 ) ( 1 ) z ( 5 ) ( 1 ) + y ( 0 ) ( 1 ) z ( 6 ) ( 1 ) y^{(7)}(1)=y^{(6)}(1)(1+z^{(0)}(1))+6y^{(5)}(1)z^{(1)}(1)+15y^{(4)}(1)z^{(2)}(1)+20y^{(3)}(1)z^{(3)}(1)+15y^{(2)}(1)z^{(4)}(1)+6y^{(1)}(1)z^{(5)}(1)+y^{(0)}(1)z^{(6)}(1) = 54 × ( 1 + 0 ) + 6 × 10 × 1 + 15 × 8 × 1 + 20 × 3 × 2 + 15 × 2 × 6 + 6 × 1 × 24 + 1 × 120 =54×(1+0)+6×10×1+15×8×-1+20×3×2+15×2×-6+6×1×24+1×-120 = 42 =-42

And now for g ( 0 ) g^{(0)} : g ( 0 ) ( 1 ) = y ( 0 ) ( 1 ) z ( 0 ) ( 1 ) = 1 × 0 = 0 g^{(0)}(1)=y^{(0)}(1)z^{(0)}(1)=1×0=0

g ( 1 ) ( 1 ) = y ( 1 ) ( 1 ) z ( 0 ) ( 1 ) + y ( 0 ) ( 1 ) z ( 1 ) ( 1 ) g^{(1)}(1)=y^{(1)}(1)z^{(0)}(1)+y^{(0)}(1)z^{(1)}(1) = 1 × 0 + 1 × 1 = 1 =1×0+1×1=1

g ( 2 ) ( 1 ) = y ( 2 ) ( 1 ) z ( 0 ) ( 1 ) + 2 y ( 1 ) ( 1 ) z ( 1 ) ( 1 ) + y ( 0 ) ( 1 ) z ( 2 ) ( 1 ) g^{(2)}(1)=y^{(2)}(1)z^{(0)}(1)+2y^{(1)}(1)z^{(1)}(1)+y^{(0)}(1)z^{(2)}(1) = 2 × 0 + 2 × 1 × 1 + 1 × 1 = 1 =2×0+2×1×1+1×-1=1

g ( 3 ) ( 1 ) = y ( 3 ) ( 1 ) z ( 0 ) ( 1 ) + 3 y ( 2 ) ( 1 ) z ( 1 ) ( 1 ) + 3 y ( 1 ) ( 1 ) z ( 2 ) ( 1 ) + y ( 0 ) ( 1 ) z ( 3 ) ( 1 ) g^{(3)}(1)=y^{(3)}(1)z^{(0)}(1)+3y^{(2)}(1)z^{(1)}(1)+3y^{(1)}(1)z^{(2)}(1)+y^{(0)}(1)z^{(3)}(1) = 3 × 0 + 3 × 2 × 1 + 3 × 1 × 1 + 1 × 2 = 5 =3×0+3×2×1+3×1×-1+1×2=5

g ( 4 ) ( 1 ) = y ( 4 ) ( 1 ) z ( 0 ) ( 1 ) + 4 y ( 3 ) ( 1 ) z ( 1 ) ( 1 ) + 6 y ( 2 ) ( 1 ) z ( 2 ) ( 1 ) + 4 y ( 1 ) ( 1 ) z ( 3 ) ( 1 ) + y ( 0 ) ( 1 ) z ( 4 ) ( 1 ) g^{(4)}(1)=y^{(4)}(1)z^{(0)}(1)+4y^{(3)}(1)z^{(1)}(1)+6y^{(2)}(1)z^{(2)}(1)+4y^{(1)}(1)z^{(3)}(1)+y^{(0)}(1)z^{(4)}(1) = 8 × 0 + 4 × 3 × 1 + 6 × 2 × 1 + 4 × 1 × 2 + 1 × 6 =8×0+4×3×1+6×2×-1+4×1×2+1×-6 = 2 =2

g ( 5 ) ( 1 ) = y ( 5 ) ( 1 ) z ( 0 ) ( 1 ) + 5 y ( 4 ) ( 1 ) z ( 1 ) ( 1 ) + 10 y ( 3 ) ( 1 ) z ( 2 ) ( 1 ) + 10 y ( 2 ) ( 1 ) z ( 3 ) ( 1 ) + 5 y ( 1 ) ( 1 ) z ( 4 ) ( 1 ) + y ( 0 ) ( 1 ) z ( 5 ) ( 1 ) g^{(5)}(1)=y^{(5)}(1)z^{(0)}(1)+5y^{(4)}(1)z^{(1)}(1)+10y^{(3)}(1)z^{(2)}(1)+10y^{(2)}(1)z^{(3)}(1)+5y^{(1)}(1)z^{(4)}(1)+y^{(0)}(1)z^{(5)}(1) = 10 × 0 + 5 × 8 × 1 + 10 × 3 × 1 + 10 × 2 × 2 + 5 × 1 × 6 + 1 × 24 =10×0+5×8×1+10×3×-1+10×2×2+5×1×-6+1×24 = 44 =44

g ( 6 ) ( 1 ) = y ( 6 ) ( 1 ) z ( 0 ) ( 1 ) + 6 y ( 5 ) ( 1 ) z ( 1 ) ( 1 ) + 15 y ( 4 ) ( 1 ) z ( 2 ) ( 1 ) + 20 y ( 3 ) ( 1 ) z ( 3 ) ( 1 ) + 15 y ( 2 ) ( 1 ) z ( 4 ) ( 1 ) + 6 y ( 1 ) ( 1 ) z ( 5 ) ( 1 ) + y ( 0 ) ( 1 ) z ( 6 ) ( 1 ) g^{(6)}(1)=y^{(6)}(1)z^{(0)}(1)+6y^{(5)}(1)z^{(1)}(1)+15y^{(4)}(1)z^{(2)}(1)+20y^{(3)}(1)z^{(3)}(1)+15y^{(2)}(1)z^{(4)}(1)+6y^{(1)}(1)z^{(5)}(1)+y^{(0)}(1)z^{(6)}(1) = 54 × 0 + 6 × 10 × 1 + 15 × 8 × 1 + 20 × 3 × 2 + 15 × 2 × 6 + 6 × 1 × 24 + 1 × 120 =54×0+6×10×1+15×8×-1+20×3×2+15×2×-6+6×1×24+1×-120 = 96 =-96

g ( 7 ) ( 1 ) = y ( 7 ) ( 1 ) z ( 0 ) ( 1 ) + 7 y ( 6 ) ( 1 ) z ( 1 ) ( 1 ) + 21 y ( 5 ) ( 1 ) z ( 2 ) ( 1 ) + 35 y ( 4 ) ( 1 ) z ( 3 ) ( 1 ) + 35 y ( 3 ) ( 1 ) z ( 4 ) ( 1 ) + 21 y ( 2 ) ( 1 ) z ( 5 ) ( 1 ) + 7 y ( 1 ) ( 1 ) z ( 6 ) ( 1 ) + y ( 0 ) ( 1 ) z ( 7 ) ( 1 ) g^{(7)}(1)=y^{(7)}(1)z^{(0)}(1)+7y^{(6)}(1)z^{(1)}(1)+21y^{(5)}(1)z^{(2)}(1)+35y^{(4)}(1)z^{(3)}(1)+35y^{(3)}(1)z^{(4)}(1)+21y^{(2)}(1)z^{(5)}(1)+7y^{(1)}(1)z^{(6)}(1)+y^{(0)}(1)z^{(7)}(1) = 42 × 0 + 7 × 54 × 1 + 21 × 10 × 1 + 35 × 8 × 2 + 35 × 3 × 6 + 21 × 2 × 24 + 7 × 1 × 120 + 1 × 720 =-42×0+7×54×1+21×10×-1+35×8×2+35×3×-6+21×2×24+7×1×-120+1×720 = 986 =986

And so we can now solve for f ( 7 ) ( 1 ) f^{(7)}(1) :

f ( 1 ) ( 1 ) = f ( 0 ) ( 1 ) g ( 1 ) ( 1 ) = 1 × 1 = 1 f^{(1)}(1)=f^{(0)}(1)g^{(1)}(1)=1×1=1

f ( 2 ) ( 1 ) = f ( 1 ) ( 1 ) g ( 1 ) ( 1 ) + f ( 0 ) ( 1 ) g ( 2 ) ( 1 ) f^{(2)}(1)=f^{(1)}(1)g^{(1)}(1)+f^{(0)}(1)g^{(2)}(1) = 1 × 1 + 1 × 1 = 2 =1×1+1×1=2

f ( 3 ) ( 1 ) = f ( 2 ) ( 1 ) g ( 1 ) ( 1 ) + 2 f ( 1 ) ( 1 ) g ( 2 ) ( 1 ) + f ( 0 ) ( 1 ) g ( 3 ) ( 1 ) f^{(3)}(1)=f^{(2)}(1)g^{(1)}(1)+2f^{(1)}(1)g^{(2)}(1)+f^{(0)}(1)g^{(3)}(1) = 2 × 1 + 2 × 1 × 1 + 1 × 5 = 9 =2×1+2×1×1+1×5=9

f ( 4 ) ( 1 ) = f ( 3 ) ( 1 ) g ( 1 ) ( 1 ) + 3 f 2 ( 1 ) g 2 ( 1 ) + 3 f ( 1 ) ( 1 ) g ( 3 ) ( 1 ) + f ( 0 ) ( 1 ) g ( 4 ) ( 1 ) f^{(4)}(1)=f^{(3)}(1)g^{(1)}(1)+3f^{2}(1)g^{2}(1)+3f^{(1)}(1)g^{(3)}(1)+f^{(0)}(1)g^{(4)}(1) = 9 × 1 + 3 × 2 × 1 + 3 × 1 × 5 + 1 × 2 = 32 =9×1+3×2×1+3×1×5+1×2=32

f ( 5 ) ( 1 ) = f ( 4 ) ( 1 ) g ( 1 ) ( 1 ) + 4 f ( 3 ) ( 1 ) g ( 2 ) ( 1 ) + 6 f ( 2 ) ( 1 ) g ( 3 ) ( 1 ) + 4 f ( 1 ) ( 1 ) g ( 4 ) ( 1 ) + f ( 0 ) ( 1 ) g ( 5 ) ( 1 ) f^{(5)}(1)=f^{(4)}(1)g^{(1)}(1)+4f^{(3)}(1)g^{(2)}(1)+6f^{(2)}(1)g^{(3)}(1)+4f^{(1)}(1)g^{(4)}(1)+f^{(0)}(1)g^{(5)}(1) = 32 × 1 + 4 × 9 × 1 + 6 × 2 × 5 + 4 × 1 × 2 + 1 × 44 =32×1+4×9×1+6×2×5+4×1×2+1×44 = 180 =180

f ( 6 ) ( 1 ) = f ( 5 ) ( 1 ) g ( 1 ) ( 1 ) + 5 f ( 4 ) ( 1 ) g ( 2 ) ( 1 ) + 10 f ( 3 ) ( 1 ) g ( 3 ) ( 1 ) + 10 f ( 2 ) ( 1 ) g ( 4 ) ( 1 ) + 5 f ( 1 ) ( 1 ) g ( 5 ) ( 1 ) + f ( 0 ) ( 1 ) g ( 6 ) ( 1 ) f^{(6)}(1)=f^{(5)}(1)g^{(1)}(1)+5f^{(4)}(1)g^{(2)}(1)+10f^{(3)}(1)g^{(3)}(1)+10f^{(2)}(1)g^{(4)}(1)+5f^{(1)}(1)g^{(5)}(1)+f^{(0)}(1)g^{(6)}(1) = 180 × 1 + 5 × 32 × 1 + 10 × 9 × 5 + 10 × 2 × 2 + 5 × 1 × 44 + 1 × 96 =180×1+5×32×1+10×9×5+10×2×2+5×1×44+1×-96 = 954 =954

f ( 7 ) ( 1 ) = f ( 6 ) ( 1 ) g ( 1 ) ( 1 ) + 6 f ( 5 ) ( 1 ) g ( 2 ) ( 1 ) + 15 f ( 4 ) ( 1 ) g ( 3 ) ( 1 ) + 20 f ( 3 ) ( 1 ) g ( 4 ) ( 1 ) + 15 f ( 2 ) ( 1 ) g ( 5 ) ( 1 ) + 6 f ( 1 ) ( 1 ) g ( 6 ) ( 1 ) + f ( 0 ) ( 1 ) g ( 7 ) ( 1 ) f^{(7)}(1)=f^{(6)}(1)g^{(1)}(1)+6f^{(5)}(1)g^{(2)}(1)+15f^{(4)}(1)g^{(3)}(1)+20f^{(3)}(1)g^{(4)}(1)+15f^{(2)}(1)g^{(5)}(1)+6f^{(1)}(1)g^{(6)}(1)+f^{(0)}(1)g^{(7)}(1) = 954 × 1 + 6 × 180 × 1 + 15 × 32 × 5 + 20 × 9 × 2 + 15 × 2 × 44 + 6 × 1 × 96 + 1 × 986 =954×1+6×180×1+15×32×5+20×9×2+15×2×44+6×1×-96+1×986 = 6524 \boxed{=6524}

Am sure there is a way to simplify this solution by proving that g ( n ) = y ( n + 1 ) y ( n ) g^{(n)}=y^{(n+1)}-y^{(n)} , but I couldn't figure out how to do that. If you can work it out, please let me know!

It must have been painful for you to type this long.An upvote especially for that.

Indraneel Mukhopadhyaya - 4 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...