Let's do some calculus! (19)

Calculus Level 3

I 1 = 0 π / 2 sin x cos x 1 + sin x cos x d x I 2 = 0 2 π cos 6 x d x I 3 = π / 2 π / 2 sin 3 x d x I 4 = 0 1 ln ( 1 x 1 ) d x \begin{aligned} I_{1} & = & \displaystyle \int_{0}^{{\pi}/{2}} {\dfrac{\sin x - \cos x}{1 + \sin x \cos x}} \,dx \\ \\ I_{2} & = & \displaystyle \int_{0}^{2 \pi} {{\cos}^{6}x} \,dx \\ \\ I_{3} & = & \displaystyle \int_{{-\pi}/{2}}^{{\pi}/{2}} {{\sin}^{3}x} \,dx \\ \\ I_{4} & = & \displaystyle \int_{0}^{1} {\ln \left( \dfrac{1}{x} - 1 \right)} \,dx \end{aligned}

From the given anti-derivatives above, find the one whose value is not equal to 0 0 . If the anti-derivative is I n I_{n} where n { 1 , 2 , 3 , 4 } n \in \{1,2,3,4\} , submit your answer as n n .

Notation: ln ( ) \ln \left( \cdot \right) denotes the natural logarithm function .


For more problems on calculus, click here .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Sep 24, 2016

Case I 1 I_1

I 1 = 0 π / 2 sin x cos x 1 + sin x cos x d x By a b f ( x ) d x = a b f ( a + b x ) d x = 1 2 0 π / 2 ( sin x cos x 1 + sin x cos x + cos x sin x 1 + cos x sin x ) d x = 0 not the solution \begin{aligned} I_1 & = \int_0^{\pi/2} \frac {\sin x - \cos x}{1+\sin x \cos x} dx & \small \color{#3D99F6}{\text{By }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx} \\ & = \frac 12 \int_0^{\pi/2} \left( \frac {\sin x - \cos x}{1+\sin x \cos x} + \frac {\cos x - \sin x}{1+\cos x \sin x} \right) dx \\ & = \color{#D61F06}{0 \quad \text{not the solution}} \end{aligned}

Case I 2 I_2

Since the integrand cos 6 x 0 \cos^6 x \ge 0 , I 2 > 0 \implies \color{#3D99F6}{I_2 > 0} . The integral can be found using beta function as follows.

I 2 = 0 2 π cos 6 x d x Since cos 6 x is even, = 4 0 π / 2 cos 6 x d x = 4 0 π / 2 cos 6 x sin 0 x d x = 2 B ( 7 2 , 1 2 ) = 2 Γ ( 7 2 ) Γ ( 1 2 ) Γ ( 4 ) = 2 3 5 π 3 ! 2 3 = 5 π 8 0 the solution \begin{aligned} I_2 & = \int_0^{2 \pi} \cos^6 x \ dx & \small \color{#3D99F6}{\text{Since }\cos^6 x \text{ is even,}} \\ & = 4 \int_0^{\pi /2} \cos^6 x \ dx \\ & = 4 \int_0^{\pi /2} \cos^6 x \sin^0 x \ dx \\ & = 2 B \left(\frac 72, \frac 12 \right) \\ & = \frac {2 \Gamma \left(\frac 72 \right)\Gamma \left(\frac 12 \right)}{\Gamma \left(4 \right)} \\ & = \frac {2 \cdot 3 \cdot 5 \pi}{3! \cdot 2^3} \\ & = \color{#3D99F6}{\frac {5\pi}8 \ne 0 \quad \text{the solution}} \end{aligned}

Case I 3 I_3

Since the integrand sin 3 x \sin^3 x is odd, I 3 = 0 \implies \color{#D61F06}{I_3 = 0} as follows.

I 3 = π / 2 π / 2 sin 3 x d x = π / 2 0 sin 3 x d x + 0 π / 2 sin 3 x d x = 0 π / 2 sin 3 ( x ) d x + 0 π / 2 sin 3 x d x = 0 π / 2 sin 3 x d x + 0 π / 2 sin 3 x d x = 0 not the solution \begin{aligned} I_3 & = \int_{-\pi/2}^{\pi/2} \sin^3 x \ dx \\ & = \int^0_{-\pi/2} \sin^3 x \ dx + \int_0^{\pi/2} \sin^3 x \ dx \\ & = \int_0^{\pi/2} \sin^3 (-x) \ dx + \int_0^{\pi/2} \sin^3 x \ dx \\ & = - \int_0^{\pi/2} \sin^3 x \ dx + \int_0^{\pi/2} \sin^3 x \ dx \\ & = \color{#D61F06}{0 \quad \text{not the solution}} \end{aligned}

Case I 4 I_4

I 4 = 0 1 ln ( 1 x 1 ) d x = 0 1 ln ( 1 x x ) d x = 0 1 ( ln ( 1 x ) ln x ) d x By a b f ( x ) d x = a b f ( a + b x ) d x = 1 2 0 1 ( ln ( 1 x ) ln x + ln ( 1 1 + x ) ln ( 1 x ) ) d x = 1 2 0 1 ( ln ( 1 x ) ln x + ln x ln ( 1 x ) ) d x = 0 not the solution \begin{aligned} I_4 & = \int_0^1 \ln \left( \frac 1x - 1\right) dx \\ & = \int_0^1 \ln \left( \frac {1-x}x \right) dx \\ & = \int_0^1 \left(\ln(1-x)-\ln x \right) dx & \small \color{#3D99F6}{\text{By }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx} \\ & = \frac 12 \int_0^1 \left(\ln(1-x)-\ln x + \ln(1-1+x) - \ln (1-x) \right) dx \\ & = \frac 12 \int_0^1 \left(\ln(1-x)-\ln x + \ln x - \ln (1-x) \right) dx \\ & = \color{#D61F06}{0 \quad \text{not the solution}} \end{aligned}

Answer: Therefore the answer is 2 \boxed{2} .

Prince Loomba
Sep 24, 2016

The reason for I2 being not 0 is clear as the function is always non negative. Others can be proved equal to 0 as in Chew-Seong's solution

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...