Let's do some calculus! (20)

Calculus Level 4

lim n ( k = 1 n a k 1 ( k 1 ) a k a f ( x ) f ( x ) + f ( ( 2 k 1 ) a x ) d x ) = 7 5 \lim_{n \to \infty} \left(\sum_{k=1}^n a^{k-1} \int_{(k-1)a}^{ka} {\dfrac{f(x)}{f(x) + f \left( \left(2k-1\right)a-x \right)}} \ dx \right) = \dfrac{7}{5}

Given that function f ( x ) > 0 f(x) > 0 , x R \forall ~ x \in \mathbb{R} is bounded and satisfies the condition above. If a < 1 a < 1 , find a a .


For more problems on calculus, click here .
2 7 \dfrac{2}{7} 7 19 \dfrac{7}{19} 1 19 \dfrac{1}{19} 9 14 \dfrac{9}{14} 1 7 \dfrac{1}{7} 14 19 \dfrac{14}{19} 14 9 \dfrac{14}{9} 9 19 \dfrac{9}{19}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Sep 24, 2016

Let the limit be L L , then we have,

L = lim n k = 1 n a k 1 ( k 1 ) a k a f ( x ) f ( x ) + f ( ( 2 k 1 ) a x ) d x By a b f ( x ) d x = a b f ( a + b x ) d x = lim n k = 1 n a k 1 1 2 ( k 1 ) a k a ( f ( x ) f ( x ) + f ( ( 2 k 1 ) a x ) + f ( ( 2 k 1 ) a x ) f ( ( 2 k 1 ) a x ) + f ( ( 2 k 1 ) a ( 2 k 1 ) a + x ) ) d x = lim n k = 1 n a k 1 1 2 ( k 1 ) a k a ( f ( x ) f ( x ) + f ( ( 2 k 1 ) a x ) + f ( ( 2 k 1 ) a x ) f ( ( 2 k 1 ) a x ) + f ( x ) ) d x = lim n k = 1 n a k 1 1 2 ( k 1 ) a k a f ( x ) + f ( ( 2 k 1 ) a x ) f ( x ) + f ( ( 2 k 1 ) a x ) d x = lim n 1 2 k = 1 n a k 1 ( k 1 ) a k a 1 d x = lim n 1 2 k = 1 n a k 1 [ k a ( k 1 ) a ] = lim n 1 2 k = 1 n a k = a 2 ( 1 a ) \begin{aligned} L & = \lim_{n \to \infty} \sum_{k=1}^n a^{k-1} \int_{(k-1)a}^{ka} \frac {f(x)}{f(x) + f((2k-1)a-x)} dx \quad \quad \small \color{#3D99F6}{\text{By }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx} \\ & = \lim_{n \to \infty} \sum_{k=1}^n a^{k-1} \frac 12 \int_{(k-1)a}^{ka} \left( \frac {f(x)}{f(x) + f((2k-1)a-x)} + \frac {f((2k-1)a-x)}{f((2k-1)a-x) + f((2k-1)a-(2k-1)a+x)} \right) dx \\ & = \lim_{n \to \infty} \sum_{k=1}^n a^{k-1} \frac 12 \int_{(k-1)a}^{ka} \left( \frac {f(x)}{f(x) + f((2k-1)a-x)} + \frac {f((2k-1)a-x)}{f((2k-1)a-x) + f(x)} \right) dx \\ & = \lim_{n \to \infty} \sum_{k=1}^n a^{k-1} \frac 12 \int_{(k-1)a}^{ka} \frac {f(x) + f((2k-1)a-x)}{f(x) + f((2k-1)a-x)} dx \\ & = \lim_{n \to \infty} \frac 12 \sum_{k=1}^n a^{k-1} \int_{(k-1)a}^{ka} 1 \ dx \\ & = \lim_{n \to \infty} \frac 12 \sum_{k=1}^n a^{k-1} [ka - (k-1)a] \\ & = \lim_{n \to \infty} \frac 12 \sum_{k=1}^n a^k \\ & = \frac a{2(1-a)} \end{aligned}

Therefore,

a 2 ( 1 a ) = 7 5 5 a = 14 14 a 19 a = 14 a = 14 19 \begin{aligned} \frac a{2(1-a)} & = \frac 75 \\ 5a & = 14-14 a \\ 19a & = 14 \\ \implies a & = \boxed{\dfrac {14}{19}} \end{aligned}

Those stacks didn't look pretty :P . Anyways, sir, as always, you got it right on spot!

Tapas Mazumdar - 4 years, 8 months ago

A perfect problem, Which upgraded me to Calculus Level 5. Nice Sums. And Very nice solution.

Only seems a bit boring and lenghty. Please dont mind sir.

Md Zuhair - 4 years, 4 months ago

sir, why did you multiply with a^(k-1) initially, is it a property related to integrals.

senna s - 3 years, 11 months ago

Log in to reply

I think someone has removed it from the question.

Chew-Seong Cheong - 3 years, 11 months ago

Log in to reply

Even i have same thought s

Md Zuhair - 3 years, 11 months ago

Since there is no restriction on $f(x)$, just replacing $f(x)=1$, then one can easily find then answer...

Daewon Chung - 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...