Let's do some calculus! (21)

Calculus Level 3

0 4 ( x 2 4 x + 5 ) sin ( x 2 ) 2 x 2 8 x + 11 d x = ? \large \displaystyle \int_{0}^{4} {\dfrac{(x^{2}-4x+5) \sin (x-2)}{2 x^{2} - 8x +11}} \,dx = \, ?


For more problems on calculus, click here .


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Sep 24, 2016

I = 0 4 ( x 2 4 x + 5 ) sin ( x 2 ) 2 x 2 8 x + 11 d x By a b f ( x ) d x = a b f ( a + b x ) d x = 1 2 0 4 ( ( x 2 4 x + 5 ) sin ( x 2 ) 2 x 2 8 x + 11 + ( ( 4 x ) 2 4 ( 4 x ) + 5 ) sin ( ( 4 x ) 2 ) 2 ( 4 x ) 2 8 ( 4 x ) + 11 ) d x = 1 2 0 4 ( ( x 2 4 x + 5 ) sin ( x 2 ) 2 x 2 8 x + 11 + ( x 2 8 x + 16 16 + 4 x + 5 ) sin ( 2 x ) 2 x 2 16 x + 32 32 + 8 x + 11 ) d x = 1 2 0 4 ( ( x 2 4 x + 5 ) sin ( x 2 ) 2 x 2 8 x + 11 + ( x 2 4 x + 5 ) sin ( 2 x ) 2 x 2 8 x + 11 ) d x Note that sin ( 2 x ) = sin ( x 2 ) = 1 2 0 4 ( ( x 2 4 x + 5 ) sin ( x 2 ) 2 x 2 8 x + 11 ( x 2 4 x + 5 ) sin ( x 2 ) 2 x 2 8 x + 11 ) d x = 1 2 0 4 0 d x = 0 \begin{aligned} I & = \int_0^4 \frac {(x^2-4x+5)\sin(x-2)}{2x^2-8x+11} dx \quad \quad \small \color{#3D99F6}{\text{By }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx} \\ & = \frac 12 \int_0^4 \left(\frac {(x^2-4x+5)\sin(x-2)}{2x^2-8x+11} + \frac {((4-x)^2-4(4-x)+5)\sin((4-x)-2)}{2(4-x)^2-8(4-x)+11} \right) dx \\ & = \frac 12 \int_0^4 \left(\frac {(x^2-4x+5)\sin(x-2)}{2x^2-8x+11} + \frac {(x^2-8x+16-16+4x+5)\sin(2-x)}{2x^2-16x+32-32+8x+11} \right) dx \\ & = \frac 12 \int_0^4 \left(\frac {(x^2-4x+5)\sin(x-2)}{2x^2-8x+11} + \frac {(x^2-4x+5)\color{#D61F06}{\sin(2-x)}}{2x^2-8x+11} \right) dx \quad \quad \small \color{#D61F06}{\text{Note that }\sin(2-x) = - \sin (x-2)} \\ & = \frac 12 \int_0^4 \left(\frac {(x^2-4x+5)\sin(x-2)}{2x^2-8x+11} \color{#D61F06}{-} \frac {(x^2-4x+5)\color{#D61F06}{\sin(x-2)}}{2x^2-8x+11} \right) dx \\ & = \frac 12 \int_0^4 0 \ dx = \boxed{0} \end{aligned}

Prince Loomba
Sep 24, 2016

Put x-2=t, change the limits it will become odd function with limits -2,2 or answer is 0

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...