Let's do some calculus! (24)

Calculus Level 3

0 x 2 ( x 2 + a 2 ) ( x 2 + b 2 ) ( x 2 + c 2 ) d x = π 2 ( a + b ) ( b + c ) ( c + a ) \large \displaystyle \int_{0}^{\infty} {\dfrac{x^{2}}{( x^{2} + a^{2} )( x^{2} + b^{2} )( x^{2} + c^{2} )}} \,dx = \dfrac{\pi}{2 ( a+b )( b+c )( c+a )}

Given that the equation above holds true for constant reals a a , b b and c c , find the value of 0 1 ( x 2 + 4 ) ( x 2 + 9 ) d x \displaystyle \int_{0}^{\infty} {\dfrac{1}{( x^{2} + 4 ) ( x^{2} + 9 )}} \,dx


For more problems on calculus, click here .
π 80 \dfrac{\pi}{80} π 10 \dfrac{\pi}{10} π 40 \dfrac{\pi}{40} π 90 \dfrac{\pi}{90} π 60 \dfrac{\pi}{60} π 30 \dfrac{\pi}{30} π 20 \dfrac{\pi}{20} π 50 \dfrac{\pi}{50}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Sep 24, 2016

Putting a = 0 a=0 , b = 2 b=2 and c = 3 c=3 , then we have:

0 x 2 ( x 2 + a 2 ) ( x 2 + b 2 ) ( x 2 + c 2 ) d x = π 2 ( a + b ) ( b + c ) ( c + a ) 0 x 2 ( x 2 + 0 2 ) ( x 2 + 2 2 ) ( x 2 + 3 2 ) d x = π 2 ( 0 + 2 ) ( 2 + 3 ) ( 3 + 0 ) 0 1 ( x 2 + 4 ) ( x 2 + 9 2 ) d x = π 60 \begin{aligned} \int_0^\infty \frac {x^2}{(x^2+a^2)(x^2+b^2)(x^2+c^2)}dx & = \frac \pi {2(a+b)(b+c)(c+a)} \\ \int_0^\infty \frac {x^2}{(x^2+0^2)(x^2+2^2)(x^2+3^2)}dx & = \frac \pi {2(0+2)(2+3)(3+0)} \\ \int_0^\infty \frac 1{(x^2+4)(x^2+9^2)}dx & = \boxed{\dfrac \pi {60}} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...