Let's do some calculus! (28)

Calculus Level 5

lim x 0 cos 2 x cos x e x cos x + e x x 3 2 x n \large {\lim_{x \to 0}} \ \dfrac{\cos^2 x - \cos x - e^x \cos x + e^x - \dfrac{x^3}{2}}{x^n}

Find the value of n n for which the above limit is finite and non-zero .

Notations: e 2.71828 e \approx 2.71828 is the Euler's number .


For more problems on calculus, click here .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Sep 25, 2016

L = lim x 0 cos 2 x cos x e x cos x + e x x 3 2 x n = lim x 0 ( cos x e x ) ( cos x 1 ) x 3 2 x n By Maclaurin series = lim x 0 ( 1 x 2 2 ! + x 4 4 ! . . . 1 x 1 ! x 2 2 ! . . . ) ( 1 x 2 2 ! + x 4 4 ! . . . 1 ) x 3 2 x n = lim x 0 ( x x 2 x 3 6 . . . ) ( x 2 2 + x 4 24 x 6 720 + . . . ) x 3 2 x n = lim x 0 x 3 2 + x 4 2 + x 5 24 x 6 24 + . . . x 3 2 x n = lim x 0 x 4 2 + x 5 24 x 6 24 + . . . x n \begin{aligned} L & = \lim_{x \to 0} \frac {\cos^2 x - \cos x - e^x \cos x + e^x - \frac {x^3}2}{x^n} \\ & = \lim_{x \to 0} \frac {(\color{#3D99F6}{\cos x} - \color{#D61F06}{e^x})(\color{#3D99F6}{\cos x} - 1) - \frac {x^3}2}{x^n} & \small \color{#3D99F6}{\text{By Maclaurin series}} \\ & = \lim_{x \to 0} \frac {\left(\color{#3D99F6}{1-\frac {x^2}{2!}+\frac {x^4}{4!}-...} - \color{#D61F06}{1-\frac {x}{1!}-\frac {x^2}{2!}-...}\right)\left(\color{#3D99F6}{1-\frac {x^2}{2!}+\frac {x^4}{4!}-...} - 1\right) - \frac {x^3}2}{x^n} \\ & = \lim_{x \to 0} \frac {\left(-x-x^2-\frac {x^3}6-...\right)\left(-\frac {x^2}{2}+\frac {x^4}{24}-\frac {x^6}{720}+...\right)-\frac {x^3}2}{x^n} \\ & = \lim_{x \to 0} \frac {\frac {x^3}2+\frac{x^4}2 + \frac {x^5}{24}-\frac{x^6}{24}+...-\frac {x^3}2}{x^n} \\ & = \lim_{x \to 0} \frac {\frac{x^4}2 + \frac {x^5}{24}-\frac{x^6}{24}+...}{x^n} \end{aligned}

From the above, we note that L = 0 L = 0 for n 3 n \le 3 , L L \to \infty for n 5 n \ge 5 and L = 1 2 L = \frac 12 for n = 4 n = \boxed{4} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...