Let's do some calculus! (29)

Calculus Level 4

lim x 0 sin x 4 x 4 cos x 4 + x 20 x 4 ( e 2 x 4 2 x 4 1 ) = ? \large \displaystyle \lim_{x \to 0} \dfrac{\sin x^4 - x^4 \cos x^4 + x^{20}}{x^4 \left( e^{2{x}^{4}} - 2 x^4 - 1 \right)} ~ = ~ ?

Submit your answer rounded up to 3 places of decimal.

Notation: e 2.71828 e \approx 2.71828 is the Euler's number .


For more problems on calculus, click here .


The answer is 0.167.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Sep 25, 2016

L = lim x 0 sin x 4 x 4 cos x 4 + x 20 x 4 ( e 2 x 4 2 x 4 1 ) Using Maclaurin series = lim x 0 x 4 x 12 3 ! + x 20 5 ! . . . x 4 ( 1 x 8 2 ! + x 16 4 ! . . . ) + x 20 x 4 ( 1 + 2 x 4 1 ! + 4 x 8 2 ! . . . 2 x 4 1 ) = lim x 0 ( 1 2 ! 1 3 ! ) x 12 ( 1 4 ! 1 5 ! + 1 ) x 20 + O ( x 24 ) 4 x 12 2 ! 8 x 16 4 ! + O ( x 20 ) Divide up and down by x 12 = lim x 0 1 3 31 x 8 30 + O ( x 12 ) 2 x 16 3 + O ( x 8 ) = 1 6 0.167 \begin{aligned} L & = \lim_{x \to 0} \frac {\color{#3D99F6}{\sin x^4}-x^4\color{#D61F06}{\cos x^4}+x^{20}}{x^4(\color{#20A900}{e^{2x^4}}-2x^4-1)} & \small \color{#3D99F6}{\text{Using Maclaurin series}} \\ & = \lim_{x \to 0} \frac {\color{#3D99F6}{x^4-\frac {x^{12}}{3!}+ \frac {x^{20}}{5!}-...}-x^4\left(\color{#D61F06}{1-\frac {x^8}{2!}+ \frac {x^{16}}{4!}-...}\right)+x^{20}}{x^4(\color{#20A900}{1+\frac {2x^4}{1!}+ \frac {4x^8}{2!}-...}-2x^4-1)} \\ & = \lim_{x \to 0} \frac {\left(\frac 1{2!} - \frac 1{3!} \right)x^{12} - \left(\frac 1{4!} - \frac 1{5!} + 1\right)x^{20} + O(x^{24})}{\frac {4x^{12}}{2!}-\frac {8x^{16}}{4!}+O(x^{20})} & \small \color{#3D99F6}{\text{Divide up and down by }x^{12}} \\ & = \lim_{x \to 0} \frac {\frac 13 - \frac {31x^8}{30} + O(x^{12})}{2-\frac {x^{16}}{3}+O(x^{8})} \\ & = \frac 16 \approx \boxed{0.167} \end{aligned}

I don't really know the application of the 'big O O ( ) O ( \cdot) ' notation that you've used in your solution. I've seen them on Wikipedia but don't know what are they.

Tapas Mazumdar - 4 years, 8 months ago

Log in to reply

In this case, O ( x 12 ) = a 3 x 12 + a 4 x 16 + a 5 x 20 + . . . O(x^{12}) = a_3x^{12} + a_4x^{16} + a_5x^{20}+... .

Chew-Seong Cheong - 4 years, 8 months ago

Log in to reply

Can you refer me some good link for me to understand this?

Tapas Mazumdar - 4 years, 8 months ago

We can Put t = x 4 t=x^4 to reduce calculations

Sabhrant Sachan - 4 years, 8 months ago

Log in to reply

Yes, I should have seen that.

Chew-Seong Cheong - 4 years, 8 months ago

Really tedious solution using L'Hôpital's rule brute force

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...