Let's do some calculus! (3)

Calculus Level 3

lim x 0 sin ( π cos 2 x ) x 2 = ? \large \displaystyle \lim_{x\to 0}{\dfrac{\sin\left(\pi \cos^{2}x\right)}{x^{2}}} ~ = ~ ?


For more problems on calculus, click here .
π \pi π 2 \dfrac{\pi}{2} 1 1 π -\pi

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Aditya Dhawan
Oct 10, 2016

did the same!

Prakhar Bindal - 4 years, 7 months ago
Chew-Seong Cheong
Sep 19, 2016

We note that as x 0 x \to 0 , sin ( π cos 2 x ) 0 \sin(\pi \cos^2 x) \to 0 and x 2 0 x^2 \to 0 . So this is a 0/0 case and we can use the L'Hôpital's rule as follows.

L = lim x 0 sin ( π cos 2 x ) x 2 Differentiate up and down w.r.t. x = lim x 0 cos ( π cos 2 x ) ( 2 π cos x sin x ) 2 x Still 0/0, differentiate again = lim x 0 sin ( π cos 2 x ) ( π 2 sin 2 2 x ) + cos ( π cos 2 x ) ( 2 π cos 2 x ) 2 = 0 + cos ( π ( 1 ) ) ( 2 π ( 1 ) ) 2 = π \begin{aligned} L & = \lim_{x \to 0} \frac {\sin(\pi \cos^2 x)}{x^2} & \small \color{#3D99F6}{\text{Differentiate up and down w.r.t. }x} \\ & = \lim_{x \to 0} \frac {\cos (\pi \cos^2 x) (-2 \pi \cos x \sin x)}{2x} & \small \color{#3D99F6}{\text{Still 0/0, differentiate again}} \\ & = \lim_{x \to 0} \frac {- \sin (\pi \cos^2 x) (\pi^2 \color{#D61F06}{\sin^2 2x}) + \cos (\pi \color{#3D99F6}{\cos^2 x}) (-2\pi \color{#3D99F6}{\cos 2 x})}{2} \\ & = \frac {\color{#D61F06}{0} + \cos (\pi (\color{#3D99F6}{1})) (-2\pi (\color{#3D99F6}{1}))}2 = \boxed{\pi} \end{aligned}

Very nice solution!

Tapas Mazumdar - 4 years, 9 months ago

Wounderfull

Patience Patience - 4 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...