Let's do some calculus! (31)

Calculus Level 4

f ( x ) = { x + 1 x > 0 2 x x 0 g ( x ) = { x + 3 x < 1 x 2 2 x 2 1 x < 2 x 5 x 2 f(x) = \begin{cases} x+1 & x>0 \\ 2-x & x \le 0 \end{cases} \quad \quad g(x) = \begin{cases} x+3 & x<1 \\ x^2 - 2x - 2 & 1 \le x < 2 \\ x-5 & x \ge 2 \end{cases}

Let f ( x ) f(x) and g ( x ) g(x) be functions satisfying the conditions above. Find lim x 0 ( g f ( x ) ) \displaystyle \left| \lim_{x \to 0} \big(g \circ f(x)\big) \right| .

Notations:

  • g f ( x ) g \circ f(x) denotes the function g of f ( x ) g~\text{of}~ f(x) or g ( f ( x ) ) g\big(f(x)\big) .
  • | \cdot | denotes the absolute value function .

For more problems on calculus, click here .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Sep 25, 2016

For x > 0 x > 0 , f ( x ) = x + 1 > 1 f(x) = x + 1 > 1 then we have:

g ( f ( x ) ) = ( f ( x ) ) 2 2 f ( x ) 2 1 x < 2 = ( x + 1 ) 2 2 ( x + 1 ) 2 = x 2 + 2 x + 1 2 x 2 2 = x 2 3 \begin{aligned} g(f(x)) & = (f(x))^2 - 2f(x) - 2 & 1 \le x < 2 \\ & = (x+1)^2 - 2(x+1) - 2 \\ & = x^2+2x+1-2x-2-2 \\ & = x^2 - 3 \end{aligned}

lim x 0 + g ( f ( x ) ) = 3 \begin{aligned} \implies \lim_{x \to 0^+} g(f(x)) & = - 3 \end{aligned}

For x 0 x \le 0 , f ( x ) = 2 x 2 f(x) = 2-x \ge 2 then we have:

g ( f ( x ) ) = f ( x ) 5 x 2 = ( 2 x ) 5 = x 3 \begin{aligned} g(f(x)) & = f(x) - 5 & x \ge 2 \\ & = (2-x) - 5 \\ & = -x-3 \end{aligned}

lim x 0 g ( f ( x ) ) = 3 \begin{aligned} \implies \lim_{x \to 0^-} g(f(x)) & = - 3 \end{aligned}

Therefore,

lim x 0 g ( f ( x ) ) = lim x 0 + g ( f ( x ) ) = lim x 0 g ( f ( x ) ) = 3 lim x 0 g ( f ( x ) ) = 3 = 3 \begin{aligned} \lim_{x \to 0} g(f(x)) & = \lim_{x \to 0^+} g(f(x)) = \lim_{x \to 0^-} g(f(x)) = - 3 \\ \implies \left| \lim_{x \to 0} g(f(x))\right| & = |-3| = \boxed{3} \end{aligned}

Viki Zeta
Sep 25, 2016

When x = 0 x=0

f ( 0 ) = 2 0 = 2 f(0) = 2-0=2

g ( 2 ) = 2 5 = 3 g(2)=2-5=-3

Therefore the answer is |-3|=3

You should consider both Left hand limit and Right hand limits for your answer. What if both were different? Then there surely wouldn't have been limit.

Tapas Mazumdar - 4 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...