Let's do some calculus! (40)

Calculus Level 5

2 100 ( H x + H x 1 + H x 2 ) d x = log ( A × ( B ! ) 3 ) + C γ \large \displaystyle \int_2^{100} (H_x + H_{x-1} + H_{x-2}) \, dx = \log ( A \times (B!)^3 ) + C \gamma

The above equation holds true for positive integers A , B , C A, B, C where B B is the largest possible integer. Find A + B + C A + B + C .

Notations:

  • H n H_n denotes the generalized harmonic number .
  • γ \gamma denotes the Euler-Mascheroni constant .
  • log ( ) \log (\cdot) denotes the natural logarithm function , that is log e ( ) \log_{e}{(\cdot)} or ln ( ) \ln(\cdot) .
  • k ! k! denotes the factorial notation , that is k ! = k ( k 1 ) ( k 2 ) . . . 3 2 1 k! = k(k-1)(k-2)...\ 3\cdot2\cdot1

Inspired from Aareyan Manzoor

For more problems on calculus, click here .


The answer is 490442.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tapas Mazumdar
Oct 15, 2016

From the relation between harmonic number and the digamma function and also between the digamma function and gamma function

H n d n = ( ψ ( n + 1 ) + γ ) d n = log ( Γ ( n + 1 ) ) + n γ + C \displaystyle \int H_n \, dn = \int \bigg( \psi(n+1) + \gamma \bigg) \, dn = \log \bigg( \Gamma(n+1) \bigg) + n \gamma + C

where C C denotes constant of integration.

We can write

2 100 ( H x + H x 1 + H x 2 ) d x = 2 100 H x d x + 2 100 H x 1 d x + 2 100 H x 2 d x \displaystyle \int_2^{100} (H_x + H_{x-1} + H_{x-2}) \, dx = \displaystyle \int_2^{100} H_x \, dx + \displaystyle \int_2^{100} H_{x-1} \, dx + \displaystyle \int_2^{100} H_{x-2} \, dx

Solving the three integrals separately

2 100 H x d x = 2 100 ( ψ ( x + 1 ) + γ ) d x = [ log ( Γ ( x + 1 ) ) + x γ ] 2 100 = log ( Γ ( 101 ) ) + 100 γ log ( Γ ( 3 ) ) 2 γ = log ( 100 ! ) log ( 2 ! ) + 98 γ \begin{aligned} \displaystyle \int_2^{100} H_x \, dx &= \int_2^{100} \bigg( \psi(x+1) + \gamma \bigg) \, dx \\ &= \left[ \log \bigg( \Gamma(x+1) \bigg) + x \gamma \right]_2^{100} \\ &= \log \bigg( \Gamma(101) \bigg) + 100 \gamma - \log \bigg( \Gamma(3) \bigg) - 2 \gamma \\ &= \log(100!) - \log(2!) + 98 \gamma \end{aligned}

2 100 H x 1 d x = 2 100 ( ψ ( x ) + γ ) d x = [ log ( Γ ( x ) ) + x γ ] 2 100 = log ( Γ ( 100 ) ) + 100 γ log ( Γ ( 2 ) ) 2 γ = log ( 99 ! ) log ( 1 ! ) + 98 γ \begin{aligned} \displaystyle \int_2^{100} H_{x-1} \, dx &= \int_2^{100} \bigg( \psi(x) + \gamma \bigg) \, dx \\ &= \left[ \log \bigg( \Gamma(x) \bigg) + x \gamma \right]_2^{100} \\ &= \log \bigg( \Gamma(100) \bigg) + 100 \gamma - \log \bigg( \Gamma(2) \bigg) - 2 \gamma \\ &= \log(99!) - \log(1!) + 98 \gamma \end{aligned}

2 100 H x 2 d x = 2 100 ( ψ ( x 1 ) + γ ) d x = [ log ( Γ ( x 1 ) ) + x γ ] 2 100 = log ( Γ ( 99 ) ) + 100 γ log ( Γ ( 1 ) ) 2 γ = log ( 98 ! ) log ( 0 ! ) + 98 γ \begin{aligned} \displaystyle \int_2^{100} H_{x-2} \, dx &= \int_2^{100} \bigg( \psi(x-1) + \gamma \bigg) \, dx \\ &= \left[ \log \bigg( \Gamma(x-1) \bigg) + x \gamma \right]_2^{100} \\ &= \log \bigg( \Gamma(99) \bigg) + 100 \gamma - \log \bigg( \Gamma(1) \bigg) - 2 \gamma \\ &= \log(98!) - \log(0!) + 98 \gamma \end{aligned}

Adding all three integrals, we obtain our result as

log ( 100 ! ) + log ( 99 ! ) + log ( 98 ! ) log ( 2 ! ) log ( 1 ! ) log ( 0 ! ) + 3 98 γ = log ( 100 ! 99 ! 98 ! 2 ! 1 ! 0 ! ) + 294 γ = log ( 490050 ( 98 ! ) 3 ) + 294 γ \begin{aligned} \log(100!) + \log(99!) + \log(98!) - \log(2!) - \log(1!) - \log(0!) + 3 \cdot 98 \gamma &= \log \bigg( \dfrac{100! \cdot 99! \cdot 98!}{2! \cdot 1! \cdot 0!} \bigg) + 294 \gamma \\ &= \log \bigg( 490050 \cdot {(98!)}^3 \bigg) + 294 \gamma \end{aligned}

Which gives

A = 490050 B = 98 C = 294 A = 490050 \\ B = 98 \\ C = 294

A + B + C = 490442 \implies A+B+C = \boxed{490442}

In general, it is not good to make people jump through numerous hoops in order to understand how to provide the final answer.

I have edited the problem statement for clarity. Please update the solution accordingly.

Calvin Lin Staff - 4 years, 8 months ago

A simpler way to prove your identity is by using the integral representation of H x H_x and switching the integrals.

Aditya Kumar - 4 years, 7 months ago

https://m.facebook.com/groups/360659387447844?view=permalink&id=859584227555355 See My Solution here:-

Shivam Sharma - 3 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...