The above equation holds true for positive integers where is the largest possible integer. Find .
Notations:
Inspired from Aareyan Manzoor
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
From the relation between harmonic number and the digamma function and also between the digamma function and gamma function
∫ H n d n = ∫ ( ψ ( n + 1 ) + γ ) d n = lo g ( Γ ( n + 1 ) ) + n γ + C
where C denotes constant of integration.
We can write
∫ 2 1 0 0 ( H x + H x − 1 + H x − 2 ) d x = ∫ 2 1 0 0 H x d x + ∫ 2 1 0 0 H x − 1 d x + ∫ 2 1 0 0 H x − 2 d x
Solving the three integrals separately
∫ 2 1 0 0 H x d x = ∫ 2 1 0 0 ( ψ ( x + 1 ) + γ ) d x = [ lo g ( Γ ( x + 1 ) ) + x γ ] 2 1 0 0 = lo g ( Γ ( 1 0 1 ) ) + 1 0 0 γ − lo g ( Γ ( 3 ) ) − 2 γ = lo g ( 1 0 0 ! ) − lo g ( 2 ! ) + 9 8 γ
∫ 2 1 0 0 H x − 1 d x = ∫ 2 1 0 0 ( ψ ( x ) + γ ) d x = [ lo g ( Γ ( x ) ) + x γ ] 2 1 0 0 = lo g ( Γ ( 1 0 0 ) ) + 1 0 0 γ − lo g ( Γ ( 2 ) ) − 2 γ = lo g ( 9 9 ! ) − lo g ( 1 ! ) + 9 8 γ
∫ 2 1 0 0 H x − 2 d x = ∫ 2 1 0 0 ( ψ ( x − 1 ) + γ ) d x = [ lo g ( Γ ( x − 1 ) ) + x γ ] 2 1 0 0 = lo g ( Γ ( 9 9 ) ) + 1 0 0 γ − lo g ( Γ ( 1 ) ) − 2 γ = lo g ( 9 8 ! ) − lo g ( 0 ! ) + 9 8 γ
Adding all three integrals, we obtain our result as
lo g ( 1 0 0 ! ) + lo g ( 9 9 ! ) + lo g ( 9 8 ! ) − lo g ( 2 ! ) − lo g ( 1 ! ) − lo g ( 0 ! ) + 3 ⋅ 9 8 γ = lo g ( 2 ! ⋅ 1 ! ⋅ 0 ! 1 0 0 ! ⋅ 9 9 ! ⋅ 9 8 ! ) + 2 9 4 γ = lo g ( 4 9 0 0 5 0 ⋅ ( 9 8 ! ) 3 ) + 2 9 4 γ
Which gives
A = 4 9 0 0 5 0 B = 9 8 C = 2 9 4
⟹ A + B + C = 4 9 0 4 4 2