Let's do some calculus! (42)

Calculus Level 5

0 π / 2 ( n = 1 5 sin n x ) ( m = 1 5 cos m x ) d x \large \int_0^{\pi/2} \left( \sum_{n=1}^5 \sin^n x \right) \left( \sum_{m=1}^5 \cos^m x \right) \,dx

The closed form of the above integral can be represented as a b + c d π \dfrac ab + \dfrac{c}{d} \pi , where ( a , b ) (a,b) and ( c , d ) (c,d) are pairwise coprime positive integers.

Evaluate a + b + c + d a+b+c+d .


For more problems on calculus, click here .


The answer is 5542.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Feb 13, 2017

I = 0 π 2 n = 1 5 sin n x m = 1 5 cos m x d x = 0 π 2 n = 1 5 m = 1 5 sin n x cos m x d x = n = 1 5 m = 1 5 0 π 2 sin n x cos m x d x = 1 2 n = 1 5 m = 1 5 B ( n + 1 2 , m + 1 2 ) where B ( m , n ) is beta function. = 1 2 n = 1 5 m = 1 5 Γ ( n + 1 2 ) Γ ( m + 1 2 ) Γ ( n + m 2 + 1 ) where Γ ( x ) is gamma function. = 1 2 ( 91 30 + 208 63 + 35 128 π ) See Note. = 3991 1260 + 35 256 π \begin{aligned} I & = \int_0^\frac \pi 2 \sum_{n=1}^5 \sin^n x \sum_{m=1}^5 \cos^m x \ dx \\ & = \int_0^\frac \pi 2 \sum_{n=1}^5 \sum_{m=1}^5 \sin^n x \cos^m x \ dx \\ & = \sum_{n=1}^5 \sum_{m=1}^5 \int_0^\frac \pi 2 \sin^n x \cos^m x \ dx \\ & = \frac 12 \sum_{n=1}^5 \sum_{m=1}^5 B \left(\frac {n+1}2, \frac {m+1}2 \right) & \small \color{#3D99F6} \text{where } B(m, n) \text{ is beta function.} \\ & = \frac 12 \sum_{n=1}^5 \sum_{m=1}^5 \frac {\Gamma \left(\frac {n+1}2 \right)\Gamma \left(\frac {m+1}2 \right)}{\Gamma \left(\frac {n+m}2 + 1 \right)} & \small \color{#3D99F6} \text{where } \Gamma (x) \text{ is gamma function.} \\ & = \frac 12 \left( \frac {91}{30} + \frac {208}{63} + \frac {35}{128}\pi \right) & \small \color{#3D99F6} \text{See Note.} \\ & = \frac {3991}{1260} + \frac {35}{256}\pi \end{aligned}

a + b + c + d = 3991 + 1260 + 35 + 256 = 5542 \implies a + b + c + d = 3991+1260+35+256 = \boxed{5542}


Note:

When both m m and n n are odd:

S o o = B ( 1 , 1 ) + 2 B ( 1 , 2 ) + 2 B ( 1 , 3 ) + B ( 2 , 2 ) + 2 B ( 2 , 3 ) + 2 B ( 3 , 3 ) = 0 ! 0 ! 1 ! + 2 × 0 ! 1 ! 2 ! + 2 × 0 ! 2 ! 3 ! + 1 ! 1 ! 3 ! + 2 × 1 ! 2 ! 4 ! + 2 ! 2 ! 5 ! = 1 + 1 + 2 3 + 1 6 + 1 6 + 1 30 = 91 30 \begin{aligned} S_{oo} & = B(1,1) + 2B(1,2) + 2B(1,3)+B(2,2) + 2B(2,3) + 2B(3,3) \\ & = \frac {0!0!}{1!} + 2 \times \frac {0!1!}{2!} + 2 \times \frac {0!2!}{3!} + \frac {1!1!}{3!} + 2 \times \frac {1!2!}{4!} + \frac {2!2!}{5!} \\ & = 1 + 1 + \frac 23 + \frac 16 + \frac 16 + \frac 1{30} \\ & = \frac {91}{30} \end{aligned}

When either m m or n n is odd and the other even:

S o e = 2 [ B ( 1 , 3 2 ) + B ( 1 , 5 2 ) + B ( 2 , 3 2 ) + B ( 2 , 5 2 ) + B ( 3 , 3 2 ) + B ( 3 , 5 2 ) ] = 2 [ 0 ! 1 2 π 3 2 1 2 π + 0 ! 3 2 1 2 π 5 2 3 2 1 2 π + 1 ! 1 2 π 5 2 3 2 1 2 π + 1 ! 3 2 1 2 π 7 2 5 2 3 2 1 2 π + 2 ! 1 2 π 7 2 5 2 3 2 1 2 π + 2 ! 3 2 1 2 π 9 2 7 2 5 2 3 2 1 2 π ] = 2 [ 2 3 + 2 4 + 4 15 + 4 35 + 16 105 + 16 315 ] = 208 63 \begin{aligned} S_{oe} & = 2 \left[ B \left(1, \frac 32\right) + B \left(1, \frac 52\right) + B \left(2, \frac 32\right) + B \left(2, \frac 52\right) + B \left(3, \frac 32\right) + B \left(3, \frac 52\right) \right] \\ & = 2 \left[\frac {0! \cdot \frac 12 \sqrt \pi}{\frac 32 \cdot \frac 12 \sqrt \pi} + \frac {0! \cdot \frac 32 \cdot \frac 12 \sqrt \pi}{\frac 52 \cdot \frac 32 \cdot \frac 12 \sqrt \pi} + \frac {1! \cdot \frac 12 \sqrt \pi}{\frac 52 \cdot \frac 32 \cdot \frac 12 \sqrt \pi} + \frac {1! \cdot \frac 32 \cdot \frac 12 \sqrt \pi}{\frac 72 \cdot \frac 52 \cdot \frac 32 \cdot \frac 12 \sqrt \pi} + \frac {2! \cdot \frac 12 \sqrt \pi}{\frac 72 \cdot \frac 52 \cdot \frac 32 \cdot \frac 12 \sqrt \pi} + \frac {2! \cdot \frac 32 \cdot \frac 12 \sqrt \pi}{\frac 92 \cdot \frac 72 \cdot \frac 52 \cdot \frac 32 \cdot \frac 12 \sqrt \pi} \right] \\ & = 2 \left[ \frac 23 + \frac 24 + \frac 4{15} + \frac 4{35} + \frac {16}{105} + \frac {16}{315} \right] \\ & = \frac {208}{63} \end{aligned}

When both m m and n n are even:

S e e = B ( 3 2 , 3 2 ) + 2 B ( 3 2 , 5 2 ) + B ( 5 2 , 5 2 ) = 1 2 π 1 2 π 2 ! + 2 × 1 2 π 3 2 1 2 π 3 ! + 3 2 1 2 π 3 2 1 2 π 4 ! = 1 8 π + 1 8 π + 3 128 π = 35 128 π \begin{aligned} S_{ee} & = B \left(\frac 32,\frac 32\right) + 2B \left(\frac 32,\frac 52\right) + B \left(\frac 52,\frac 52\right) \\ & = \frac {\frac 12 \sqrt \pi \cdot \frac 12 \sqrt \pi}{2!} + 2 \times \frac {\frac 12 \sqrt \pi \cdot \frac 32 \cdot \frac 12 \sqrt \pi}{3!} + \frac {\frac 32 \cdot \frac 12 \sqrt \pi \cdot \frac 32 \cdot \frac 12 \sqrt \pi}{4!} \\ & = \frac 18 \pi + \frac 18 \pi + \frac 3{128} \pi \\ & = \frac {35}{128} \pi \end{aligned}

Under what conditions can we change the order of integration and summations?

P.S. In the fifth line from the top you've mistakenly written

where Γ ( x ) is the Beta Gamma function \color{#3D99F6}{\text{where } \Gamma(x) \text{ is the }} \underbrace{\color{#D61F06}{\text{Beta}}}_{\color{#3D99F6} \text{Gamma}} \color{#3D99F6}{\text{ function}}

Tapas Mazumdar - 4 years, 3 months ago

Log in to reply

There are only finite terms added together, therefore integration and summations are interchangeable. Thanks for pointing out the typo.

Chew-Seong Cheong - 4 years, 3 months ago

Any short method ?? Although very less probability

Aakash Khandelwal - 4 years, 3 months ago

Log in to reply

I am also waiting for one.

Chew-Seong Cheong - 4 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...