Let's do some calculus! (48)

Calculus Level 5

0 1 { 1 x } 2017 d x \large \int_0^1 {\left\{ \dfrac 1x \right\}}^{2017} \mathrm{d} x

If the value of the above integral can be represented as

j = 1 ζ ( j + A ) B ( C + j j ) \sum_{j=1}^{\infty} \dfrac{\zeta (j+A) - B}{ \binom{C + j}{j} }

for positive integers A , B A, B and C C , then evaluate A + B + C A+B+C .

Notations:

Hint: Generalize for

0 1 { 1 x } k d x \int_0^1 {\left\{ \dfrac 1x \right\}}^{k} \mathrm{d} x

where k 0 k \ge 0 is an integer.


For more problems on calculus, click here .


The answer is 2019.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tapas Mazumdar
May 29, 2017

Lemma:

0 1 { 1 k } k d x = j = 1 ζ ( j + 1 ) 1 ( k + j j ) = j = 1 ζ ( j + 1 ) 1 ( k + j k ) \int_0^1 {\left\{ \dfrac 1k \right\}}^k \mathrm{d} x = \sum_{j=1}^{\infty} \dfrac{\zeta (j+1) - 1}{\dbinom{k+j}{j}} = \sum_{j=1}^{\infty} \dfrac{\zeta (j+1) - 1}{\dbinom{k+j}{k}}

* This implies that our integral is j = 1 ζ ( j + 1 ) 1 ( 2017 + j j ) \displaystyle \sum_{j=1}^{\infty} \dfrac{\zeta (j+1) - 1}{\dbinom{2017+j}{j}} , which gives A + B + C = 2019 A+B+C = \boxed{2019} .

Proof:

Let

I = 0 1 { 1 k } k d x I = \int_0^1 {\left\{ \dfrac 1k \right\}}^k \mathrm{d} x

Make the substitution t = 1 x d t = 1 x 2 d x t = \dfrac 1x \implies \mathrm{d} t = - \dfrac{1}{x^2} \mathrm{d} x and 0 1 1 \displaystyle \int_0^1 \mapsto \int_{\infty}^1 . So we get

I = 0 1 { 1 k } k ( x 2 ) ( 1 x 2 ) d x = 1 { t } k t 2 d t = 1 { t } k t 2 d t = 1 ( t t ) k t 2 d t = n = 1 n n + 1 ( t n ) k t 2 d t \begin{aligned} I &= \int_0^1 {\left\{ \dfrac 1k \right\}}^k \cdot (-x^2) \cdot \left( - \dfrac{1}{x^2} \right) \mathrm{d} x \\ &= - \int_{\infty}^1 \dfrac{ {\left\{ t \right\}}^k }{t^2} \mathrm{d} t \\ &= \int_1^{\infty} \dfrac{ {\left\{ t \right\}}^k }{t^2} \mathrm{d} t \\ &= \int_1^{\infty} \dfrac{ {(t - \left\lfloor t \right\rfloor ) }^k }{t^2} \mathrm{d} t \\ &= \sum_{n=1}^{\infty} \int_n^{n+1} \dfrac{ (t - n)^k }{t^2} \mathrm{d} t \end{aligned}

Make another substitution y = t n d y = d t y = t-n \implies \mathrm{d} y = \mathrm{d}t and n n + 1 0 1 \displaystyle \int_n^{n+1} \mapsto \int_0^1 . So we have

I = n = 1 0 1 y k ( y + n ) 2 d y = 0 1 y k ( n = 1 1 ( y + n ) 2 ) d y \begin{aligned} I &= \sum_{n=1}^{\infty} \int_0^1 \dfrac{y^k}{ (y+n)^2 } \mathrm{d} y \\ &= \int_0^1 y^k \left( \sum_{n=1}^{\infty} \dfrac{1}{ (y+n)^2 } \right) \mathrm{d} y \end{aligned}

Note that

1 ( y + n ) 2 = Γ ( 2 ) ( y + n ) 2 = 1 ( y + n ) 2 0 s e s d s = 0 u e ( n + y ) u d u \dfrac{1}{ (y+n)^2 } = \dfrac{\Gamma(2)}{ (y+n)^2 } = \dfrac{1}{(y+n)^2} \cdot \int_0^{\infty} s e^{-s} \mathrm{d} s = \int_0^{\infty} u e^{-(n+y)u} \mathrm{d} u

Thus

n = 1 1 ( y + n ) 2 = n = 1 0 u e ( n + y ) u d u = 0 n = 1 u e ( n + y ) u d u = 0 u e u y e u 1 d u \sum_{n=1}^{\infty} \dfrac{1}{ (y+n)^2 } = \sum_{n=1}^{\infty} \int_0^{\infty} u e^{-(n+y)u} \mathrm{d} u = \int_0^{\infty} \sum_{n=1}^{\infty} u e^{-(n+y)u} \mathrm{d} u = \int_0^{\infty} \dfrac{u e^{-uy}}{e^u - 1} \mathrm{d} u

And so

I = 0 1 y k ( 0 u e u y e u 1 d u ) d y = 0 u e u 1 ( 0 1 y k e u y d y ) d u \begin{aligned} I &= \int_0^1 y^k \left( \int_0^{\infty} \dfrac{u e^{-uy}}{e^u - 1} \mathrm{d} u \right) \mathrm{d} y \\ &= \int_0^{\infty} \dfrac{u}{e^u -1} \left( \int_0^1 y^k e^{-uy} \mathrm{d} y \right) \mathrm{d} u \end{aligned}

Let

L k = 0 1 y k e u y d y L_k = \int_0^1 y^k e^{-uy} \mathrm{d} y

integrating by parts gives

L k = e u u + ( k u ) L k 1 L_k = - \dfrac{e^{-u}}{u} + \left( \dfrac ku \right) L_{k-1}

Let M k = u k k ! L k M_k = \dfrac{u^k}{k!} L_k . Note that

u k k ! L k = e u u u k k ! + ( u k 1 ( k 1 ) ! ) L k 1 M k = e u u u k k ! + M k 1 \begin{aligned} & \dfrac{u^k}{k!} \cdot L_k = - \dfrac{e^{-u}}{u} \cdot \dfrac{u^k}{k!} + \left( \dfrac{u^{k-1}}{(k-1)!} \right) L_{k-1} \\ \implies & M_k = - \dfrac{e^{-u}}{u} \cdot \dfrac{u^k}{k!} + M_{k-1} \end{aligned}

Thus we have obtained a recursive pattern which gives us

M k = e u u ( r = 0 k 1 u k r ( k r ) ! ) + M 0 M_k = - \dfrac{e^{-u}}{u} \left( \sum_{r=0}^{k-1} \dfrac{u^{k-r}}{(k-r)!} \right) + M_0

Here

M 0 = u 0 0 ! L 0 = 0 1 e u y d y = 1 e u u M_0 = \dfrac{u^0}{0!} L_0 = \int_0^1 e^{-uy} \mathrm{d} y = \dfrac{1-e^{-u}}{u}

Hence

M k = e u u ( r = 0 k 1 u k r ( k r ) ! ) + 1 e u u = e u u ( r = 0 k 1 u k r ( k r ) ! ) + e u e u e u u = e u u ( e u ( 1 + r = 0 k 1 u k r ( k r ) ! ) ) = e u u j = 1 u k + j ( k + j ) ! \begin{aligned} M_k &= - \dfrac{e^{-u}}{u} \left( \sum_{r=0}^{k-1} \dfrac{u^{k-r}}{(k-r)!} \right) + \dfrac{1-e^{-u}}{u} \\ &= - \dfrac{e^{-u}}{u} \left( \sum_{r=0}^{k-1} \dfrac{u^{k-r}}{(k-r)!} \right) + \dfrac{e^{-u} \cdot e^u -e^{-u}}{u} \\ &= \dfrac{e^{-u}}{u} \left( e^u - \left( 1 + \sum_{r=0}^{k-1} \dfrac{u^{k-r}}{(k-r)!} \right) \right) \\ &= \dfrac{e^{-u}}{u} \sum_{j=1}^{\infty} \dfrac{u^{k+j}}{(k+j)!} \end{aligned}

This gives

L k = k ! u k e u u j = 1 u k + j ( k + j ) ! = k ! e u j = 1 u j 1 ( k + j ) ! L_k = \dfrac{k!}{u^k} \cdot \dfrac{e^{-u}}{u} \sum_{j=1}^{\infty} \dfrac{u^{k+j}}{(k+j)!} = k! e^{-u} \sum_{j=1}^{\infty} \dfrac{u^{j-1}}{(k+j)!}

So

I = 0 u e u 1 ( k ! e u j = 1 u j 1 ( k + j ) ! ) d u = j = 1 k ! ( k + j ) ! 0 u j e u e u 1 d u I = \int_0^{\infty} \dfrac{u}{e^u -1} \left( k! e^{-u} \sum_{j=1}^{\infty} \dfrac{u^{j-1}}{(k+j)!} \right) \mathrm{d} u = \sum_{j=1}^{\infty} \dfrac{k!}{(k+j)!} \int_0^{\infty} \dfrac{u^j e^{-u}}{e^u -1} \mathrm{d} u

Let

T = 0 u j e u e u 1 d u = 0 u j e 2 u r = 0 e r u d u = r = 0 0 u j e ( r + 2 ) u d u = r = 0 Γ ( j + 1 ) ( r + 2 ) j + 1 = r = 0 j ! ( r + 2 ) j + 1 = j ! ( ζ ( j + 1 ) 1 ) \begin{aligned} T &= \int_0^{\infty} \dfrac{u^j e^{-u}}{e^u -1} \mathrm{d} u \\ &= \int_0^{\infty} u^j e^{-2u} \sum_{r=0}^{\infty} e^{-ru} \mathrm{d} u \\ &= \sum_{r=0}^{\infty} \int_0^{\infty} u^j e^{-(r+2)u} \mathrm{d}u \\ &= \sum_{r=0}^{\infty} \dfrac{\Gamma(j+1)}{ (r+2)^{j+1} } \\ &= \sum_{r=0}^{\infty} \dfrac{ j! }{ (r+2)^{j+1} } \\ &= j! \left( \zeta(j+1) -1 \right) \end{aligned}

Finally, we get

I = j = 1 k ! j ! ( k + j ) ! ( ζ ( j + 1 ) 1 ) = j = 1 ζ ( j + 1 ) 1 ( k + j ) ! k ! j ! = j = 1 ζ ( j + 1 ) 1 ( k + j j ) or j = 1 ζ ( j + 1 ) 1 ( k + j k ) \begin{aligned} I &= \sum_{j=1}^{\infty} \dfrac{k! j!}{(k+j)!} \left( \zeta(j+1) -1 \right) \\ &= \sum_{j=1}^{\infty} \dfrac{ \zeta(j+1) -1 }{ \frac{(k+j)!}{k! j!} } \\ &= \sum_{j=1}^{\infty} \dfrac{ \zeta(j+1) -1 }{ \dbinom{k+j}{j} } \text{ or } \sum_{j=1}^{\infty} \dfrac{ \zeta(j+1) -1 }{ \dbinom{k+j}{k} } \end{aligned}

Q . E . D . \mathbf{Q.E.D.}

This is huge!!!

Md Zuhair - 4 years ago

nice! a more general result for those interested

Aareyan Manzoor - 4 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...