Let's do some calculus! (49)

Calculus Level 5

I 1 = 0 ln 2 ( x ) e x x 1 / 4 d x I 2 = 0 x 1 / 4 e x d x \begin{aligned} & \large I_1 = \int_0^{\infty} \dfrac{\ln^2 (x)}{e^x} x^{{1}/{4}} \mathrm{d}x \\ & \large I_2 = \int_0^{\infty} \dfrac{x^{-{1}/{4}}}{e^x} \mathrm{d}x \end{aligned}

Let I 1 I_1 and I 2 I_2 be as defined above. If the closed form of I 1 I 2 I_1 I_2 can be represented as

a b c π 3 c π 2 + d c c π 2 ln ( c ) + π 2 γ c c + π γ 2 c c + γ π ( d ln ( c ) c c c ) e c π ln ( c ) + f π ln 2 ( c ) c c + c c π G \dfrac{a}{b \sqrt c} \pi^3 - \sqrt{c} \pi^2 + \dfrac{d}{c \sqrt{c}} \pi^2 \ln(c) + \dfrac{\pi^2 \gamma}{c \sqrt c} + \dfrac{\pi \gamma^2}{c \sqrt c} + \gamma \pi \left( \dfrac{d \ln(c)}{\sqrt c} - c \sqrt c \right) - e \sqrt{c} \pi \ln(c) + \dfrac{f \pi \ln^2 (c)}{c \sqrt{c}} + c \sqrt{c} \pi G

where alphabets in lowercase from a a to f f are distinct positive integers with coprime-pairs ( a , b ) , ( c , d ) (a,b) , (c,d) and ( c , f ) (c,f) and c c is not a perfect power, evaluate a + b + c + d + e + f a+b+c+d+e+f .

Notations:


Inspiration.

For more problems on calculus, click here .


The answer is 33.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Jun 10, 2017

We note that I 1 = Γ ( 5 4 ) = Γ ( 5 4 ) [ ψ ( 5 4 ) 2 + ψ ( 5 4 ) ] I 2 = Γ ( 3 4 ) I_1 \; = \; \Gamma''\big(\tfrac54\big) \; = \; \Gamma\big(\tfrac54\big)\big[\psi\big(\tfrac54\big)^2 + \psi'\big(\tfrac54\big)\big] \hspace{3cm} I_2 \; = \; \Gamma\big(\tfrac34\big) and so I 1 I 2 = Γ ( 5 4 ) Γ ( 3 4 ) [ ψ ( 5 4 ) 2 + ψ ( 5 4 ) ] = 1 4 Γ ( 1 4 ) Γ ( 3 4 ) [ ψ ( 5 4 ) 2 + ψ ( 5 4 ) ] = 1 4 π c o s e c 1 4 π [ ψ ( 5 4 ) 2 + ψ ( 5 4 ) ] = π 2 2 [ ψ ( 5 4 ) 2 + ψ ( 5 4 ) ] \begin{aligned} I_1I_2 & = \; \Gamma\big(\tfrac54\big)\Gamma\big(\tfrac34\big)\big[\psi\big(\tfrac54\big)^2 + \psi'\big(\tfrac54\big)\big] \; = \; \tfrac14\Gamma\big(\tfrac14\big)\Gamma\big(\tfrac34\big)\big[\psi\big(\tfrac54\big)^2 + \psi'\big(\tfrac54\big)\big] \\ & = \; \tfrac14\pi \mathrm{cosec}\,\tfrac14\pi\big[\psi\big(\tfrac54\big)^2 + \psi'\big(\tfrac54\big)\big] \; = \; \tfrac{\pi}{2\sqrt{2}}\big[\psi\big(\tfrac54\big)^2 + \psi'\big(\tfrac54\big)\big] \end{aligned} Now γ 2 ln 2 = ψ ( 1 2 ) = 1 2 ψ ( 1 4 ) + 1 2 ψ ( 3 4 ) + ln 2 = ψ ( 1 4 ) + 1 2 π cot 1 4 π + ln 2 = ψ ( 1 4 ) + 1 2 π + ln 2 \begin{aligned} -\gamma - 2\ln2 \; = \; \psi\big(\tfrac12\big) & = \tfrac12\psi\big(\tfrac14\big) + \tfrac12\psi\big(\tfrac34\big) + \ln 2 \; = \; \psi\big(\tfrac14\big) + \tfrac12\pi \cot\tfrac14\pi + \ln2 \\ & = \psi\big(\tfrac14\big) + \tfrac12\pi + \ln2 \end{aligned} and so ψ ( 5 4 ) = ψ ( 1 4 ) + 4 = 4 γ 3 ln 2 1 2 π \psi\big(\tfrac54\big) \; = \; \psi\big(\tfrac14\big) + 4 \; = \; 4 - \gamma - 3\ln2 - \tfrac12\pi On the other hand ψ ( 5 4 ) = ψ ( 1 4 ) 16 = π 2 + 8 G 16 \psi'\big(\tfrac54\big) \; = \; \psi'\big(\tfrac14\big) - 16 \; = \; \pi^2 + 8G - 16 and hence I 1 I 2 = π 2 2 [ ( 4 γ 3 ln 2 1 2 π ) 2 + π 2 + 8 G 16 ] = π 2 2 [ γ 2 + 9 ( ln 2 ) 2 + 5 4 π 2 + 8 G 8 γ 24 ln 2 4 π + 6 γ ln 2 + γ π + 3 π ln 2 ] = 5 π 3 8 2 2 π 2 + 3 2 2 π 2 ln 2 + π 2 γ 2 2 + π γ 2 2 2 + γ π ( 3 ln 2 2 2 2 ) 6 2 π ln 2 + 9 π ( ln 2 ) 2 2 2 + 2 2 π G \begin{aligned} I_1I_2 & = \frac{\pi}{2\sqrt{2}}\left[\big(4 - \gamma - 3\ln2 - \tfrac12\pi\big)^2 + \pi^2 + 8G - 16 \right] \\ & = \frac{\pi }{2\sqrt{2}}\Big[ \gamma^2 + 9(\ln2)^2 + \tfrac54\pi^2 + 8G - 8\gamma - 24\ln2 - 4\pi + 6\gamma\ln2 + \gamma\pi + 3\pi\ln2 \Big] \\ & = \begin{array}{l} \frac{5\pi^3}{8\sqrt{2}} - \sqrt{2}\pi^2 + \frac{3}{2\sqrt{2}}\pi^2\ln2 + \frac{\pi^2\gamma}{2\sqrt{2}} + \frac{\pi \gamma^2}{2\sqrt{2}} \\ + \gamma\pi\Big(\frac{3\ln2}{\sqrt{2}} - 2\sqrt{2}\Big) - 6\sqrt{2}\pi\ln2 + \frac{9\pi (\ln2)^2}{2\sqrt{2}} + 2\sqrt{2}\pi G \end{array} \end{aligned} This makes a = 5 a=5 , b = 8 b=8 , c = 2 c=2 , d = 3 d=3 , e = 6 e=6 , f = 9 f=9 , and so the answer is 5 + 8 + 2 + 3 + 6 + 9 = 33 5+8+2+3+6+9 = \boxed{33} .

Fantastic!

Tapas Mazumdar - 4 years ago

Log in to reply

nice problem!, although the answer was a bit tedious. it would have been better if you asked the sum of the constants in π c c ( a 2 + b G + d π 2 + ( a e γ f ln ( c ) π c ) 2 ) \dfrac{\pi}{c\sqrt{c}} \left(-a^2+bG+d\pi^2+\left(a-e\gamma-f\ln(c)-\dfrac{\pi}{c}\right)^2\right)

Aareyan Manzoor - 3 years, 12 months ago

Log in to reply

I had thought about that but wasn't very sure that the expression could not be manipulated (i.e., making the expression in the square different) but I find that it would not have been the case.

Also, if one can find the above form then one can also do expansion. It's basically just there for more thrill as readers may get intimidated by such a large expression.

Tapas Mazumdar - 3 years, 12 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...