∫ 0 1 { ( − 1 ) ⌊ 1 / x ⌋ ⋅ x 1 } d x
If the value of the above integral can be represented as a + ln ( π b ) for positive integers a and b , find a + b .
Notations:
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
You made a mistake here
n = 1 ∑ ∞ ( ∫ 2 n − 1 2 n x − 1 d x + ∫ 2 n 2 n + 1 x 1 d x ) = n = 1 ∑ ∞ ( − ln ( 2 n ) + ln ( 2 n − 1 ) + ln ( 2 n + 1 ) − ln ( 2 n ) ) = n = 1 ∑ ∞ ln ( 4 n 2 4 n 2 − 1 ) = ln ( n = 1 ∏ ∞ 4 n 2 4 n 2 − 1 ) = ln ( π 2 )
which is the reciprocal of the Wallis Product.
Problem Loading...
Note Loading...
Set Loading...
∫ 0 1 { ( − 1 ) ⌊ x 1 ⌋ ⋅ x 1 } d x = ∫ 1 ∞ x 2 ( − 1 ) ⌊ x ⌋ x − ⌊ ( − 1 ) ⌊ x ⌋ x ⌋ d x by x 1 → x
Split into regions of floor(odd.xyz) = odd and floor(even.xyz) = even
n = 1 ∑ ∞ ∫ 2 n − 1 2 n x − 1 d x + ∫ 2 n 2 n + 1 x 1 d x − n = 1 ∑ ∞ ∫ 2 n − 1 2 n x 2 − 2 n d x + ∫ 2 n 2 n + 1 x 2 2 n d x =
n = 1 ∑ ∞ − ln ( 2 n ) + ln ( 2 n − 1 ) + ln ( 2 n + 1 ) − ln ( 2 n ) + n = 1 ∑ ∞ 2 n − 1 2 n + 2 n + 1 2 n − 2 =
ln ( n = 1 ∏ ∞ 1 − 4 n 2 1 ) + n = 1 ∑ ∞ 2 n − 1 1 − 2 n + 1 1
n = 1 ∏ ∞ 1 − 4 n 2 1 = π 2 from the Wallis Product
n = 1 ∑ ∞ 2 n − 1 1 − 2 n + 1 1 = n = 1 ∑ ∞ ∫ 0 1 ( y 2 ) n − 1 d y − ( y 2 ) n d y = ∫ 0 1 n = 1 ∑ ∞ ( y 2 ) n − 1 d y − ( y 2 ) n d y =
∫ 0 1 1 − y 2 1 − ( 1 − y 2 1 − 1 ) = 1 by noticing the infinite geometric sequence and reversing the sum and integral. ln π 2 + 1