Let's do some calculus! (52)

Calculus Level 4

Let f ( x ) f(x) be a real-valued function which is positive and continuous in [ a , b ] [a,b] and differentiable in ( a , b ) (a,b) (where b > a b>a ). Given that

{ lim x a + f ( x ) = 1 lim x b f ( x ) = 3 4 \begin{cases} \displaystyle \lim_{x \to a^{+}} f(x) = 1 \\ \displaystyle \lim_{x \to b^{-}} f(x) = \sqrt[4] {3} \end{cases}

and f ( x ) ( f ( x ) ) 3 + 1 f ( x ) f'(x) \ge {(f(x))}^3 + \dfrac{1}{f(x)} , find ( b a ) max (b-a)_{\text{max}} .


For more problems on calculus, click here .
π 12 \dfrac{\pi}{12} π 96 \dfrac{\pi}{96} π 36 \dfrac{\pi}{36} π 24 \dfrac{\pi}{24}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
Aug 28, 2017

Let y = f ( x ) y = f(x) such that d y d x y 3 + 1 y \frac{dy}{dx} \ge y^3 + \frac{1}{y} , which separates into y y 4 + 1 d y d x \frac{y}{y^4 + 1} dy \ge dx . On the LHS, let u = y 2 , d u = 2 y d y u = y^2, du = 2y dy so that we now have:

1 2 1 u 2 + 1 d u d x 1 2 a r c t a n ( u ) x + C 1 2 a r c t a n ( y 2 ) x + C . \frac{1}{2} \cdot \frac{1}{u^2 + 1} du \ge dx \Rightarrow \frac{1}{2} \cdot arctan(u) \ge x + C \Rightarrow \boxed{\frac{1}{2} \cdot arctan(y^2) \ge x + C}.

We now apply the original limits of f ( a ) = 1 , f ( b ) = 3 1 4 f(a) = 1, f(b) = 3^{\frac{1}{4}} which now yield:

1 2 a r c t a n ( 1 ) a + C π 8 a + C ; \frac{1}{2} \cdot arctan(1) \ge a + C \Rightarrow \frac{\pi}{8} \ge a + C;

1 2 a r c t a n ( 3 ) b + C π 6 b + C . \frac{1}{2} \cdot arctan (\sqrt{3}) \ge b + C \Rightarrow \frac{\pi}{6} \ge b + C.

Finally, ( b a ) m a x = ( π 6 C ) ( π 8 C ) = 4 π 3 π 24 = π 24 . (b-a)_{max} = (\frac{\pi}{6} - C) - (\frac{\pi}{8} - C) = \frac{4\pi - 3\pi}{24} = \boxed{\frac{\pi}{24}}.

Exactly the same!!!

Aaghaz Mahajan - 3 years, 3 months ago

Log in to reply

Good to know, Aaghaz, thanks :)

tom engelsman - 3 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...