Let's do some calculus! (56)

Calculus Level 5

Let f : R R f: \mathbb{R} \to \mathbb{R} given by y = f ( x ) y = f(x) be a real-valued continuous function satisfying the differential equation

d 3 y d x 3 d 2 y d x 2 d y d x + y = 2 e x \large \dfrac{d^3 y}{dx^3} - \dfrac{d^2 y}{dx^2} - \dfrac{dy}{dx} + y = 2e^x

Given that f ( 0 ) = 0 , f ( 0 ) = 1 f(0)=0, f'(0)=1 and f ( 0 ) = 1 f''(0)=1 . Find the solution of the differential equation.


For more problems on calculus, click here .
y = 1 2 ( x 2 e x + e x e x ) y= \dfrac12 \left(x^2 e^x + e^x - e^{-x}\right) y = 1 2 ( x e x + e x + e x ) y= \dfrac12 \left(x e^x + e^x + e^{-x}\right) y = 1 2 ( x e x + e x e x ) y= \dfrac12 \left(x e^x + e^x - e^{-x}\right) y = 1 2 ( x 2 e x + e x + e x ) y= \dfrac12 \left(x^2 e^x + e^x + e^{-x}\right)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Tom Engelsman
May 13, 2018

This can be accomplished via a Laplace Transform:

y y y + y = 2 e x ; y''' - y'' - y' + y = 2e^{x};

or L [ y ( x ) ] = ( s 3 Y ( s ) s 2 y ( 0 ) s y ( 0 ) y ( 0 ) ) ( s 2 Y ( s ) s y ( 0 ) y ( 0 ) ) ( s Y ( s ) y ( 0 ) ) + Y ( s ) = 2 s 1 ; L[y(x)] = (s^3Y(s) - s^2 y(0) - s y'(0) - y''(0)) - (s^2 Y(s) - s y(0) - y'(0)) - (s Y(s) - y(0)) + Y(s) = \frac{2}{s-1};

or ( s 3 s 2 s + 1 ) Y ( s ) s 1 + 1 = 2 s 1 ; (s^3 - s^2 - s + 1)Y(s) - s - 1 + 1 = \frac{2}{s-1};

or ( s 3 s 2 s + 1 ) Y ( s ) = 2 s 1 + s ( s 1 ) s 1 ; (s^3 - s^2 - s + 1)Y(s) = \frac{2}{s-1} + \frac{s(s-1)}{s-1};

or Y ( s ) = s 2 s + 2 ( s 1 ) ( s 3 s 2 s + 1 ) = 1 2 ( s + 1 ) + 1 2 ( s 1 ) + 1 ( s 1 ) 3 ; Y(s) = \frac{s^2 - s + 2}{(s-1)(s^3 - s^2 - s + 1)} = -\frac{1}{2(s+1)} + \frac{1}{2(s-1)} + \frac{1}{(s-1)^3};

or y ( x ) = L 1 [ Y ( s ) ] = 1 2 e x + 1 2 e x + 1 2 x 2 e x . y(x) = L^{-1}[Y(s)] = \boxed{-\frac{1}{2} \cdot e^{-x} + \frac{1}{2} \cdot e^{x} + \frac{1}{2} \cdot x^2 e^{x}}.

Correction: Partial fraction decomposition of s 2 s + 2 ( s 1 ) ( s 3 s 2 s + 1 ) = 1 2 ( s + 1 ) + 1 2 ( s 1 ) + 1 ( s 1 ) 3 \dfrac{s^2 - s + 2}{\left(s-1\right)\left(s^3 - s^2 - s + 1\right)} = -\dfrac1{2\left(s+1\right)} + \dfrac1{2\left(s-1\right)} +\dfrac1{\left(s-1\right)^3} meaning that you have an extra 2 2 in the last denominator. However, the inverse laplace transform of this term is correct in the final result.

Jesse Nieminen - 3 years ago

Nice work using Laplace Transformation! :)

Tapas Mazumdar - 3 years ago
Tapas Mazumdar
May 14, 2018

I'll state the differential coefficients as d n y d x n = f (n times) ( x ) \dfrac{d^n y}{dx^n} = f^{''' \cdots ''' \ \text{ (n times) }} (x) .

f ( x ) f ( x ) f ( x ) + f ( x ) = 2 e x e x ( f ( x ) f ( x ) ) e x ( f ( x ) f ( x ) ) = 2 Integrate both sides using e x ( f ( x ) + f ( x ) ) d x = e x f ( x ) + C e x f ( x ) e x f ( x ) = 2 x + c 1 Using f ( 0 ) = 1 and f ( 0 ) = 0 we get c 1 = 1 e x f ( x ) e x f ( x ) + e x f ( x ) e x f ( x ) = 2 x + 1 e x ( f ( x ) f ( x ) ) + e x ( f ( x ) f ( x ) ) = 2 x + 1 Integrate both sides e x f ( x ) + e x f ( x ) = x 2 + x + c 2 Using f ( 0 ) = 1 and f ( 0 ) = 0 we get c 2 = 1 e x f ( x ) + e x f ( x ) = x 2 + x + 1 f ( x ) + f ( x ) = x 2 e x + x e x + e x Solving the simple Bernoulli LDE f ( x ) e x = 1 2 ( x 2 e 2 x + e 2 x + c 3 ) Using f ( 0 ) = 0 we get c 3 = 1 y = 1 2 ( x 2 e x + e x e x ) \begin{aligned} & f'''(x) - f''(x) - f'(x) + f(x) = 2e^x \\ \implies & e^{-x} \left( f'''(x) - f''(x) \right) - e^{-x} \left( f'(x) - f(x) \right) = 2 & \small \color{#3D99F6}{\text{Integrate both sides using } \int e^x (f(x) + f'(x)) \,dx = e^x f(x) + C} \\ \implies & e^{-x} f''(x) - e^{-x} f(x) = 2x + c_1 & \small \color{#3D99F6}{\text{Using } f''(0) = 1 \text{ and } f(0) = 0 \text{ we get } c_1 = 1} \\ \implies & e^{-x} f''(x) - e^{-x} f'(x) + e^{-x} f'(x) - e^{-x} f(x) = 2x +1 \\ \implies & e^{-x} \left( f''(x) - f'(x) \right) + e^{-x} \left( f'(x) - f(x) \right) = 2x + 1 & \small \color{#3D99F6}{\text{Integrate both sides}} \\ \implies & e^{-x} f'(x) + e^{-x} f(x) = x^2 + x + c_2 & \small \color{#3D99F6}{\text{Using } f'(0) = 1 \text{ and } f(0) = 0 \text{ we get } c_2 = 1} \\ \implies & e^{-x} f'(x) + e^{-x} f(x) = x^2 + x + 1 \\ \implies & f'(x) + f(x) = x^2 e^x + x e^x + e^x & \small \color{#3D99F6}{\text{Solving the simple Bernoulli LDE}} \\ \implies & f(x) e^x = \dfrac{1}{2} \left( x^2 e^{2x} + e^{2x} + c_3 \right) & \small \color{#3D99F6}{\text{Using } f(0) = 0 \text{ we get } c_3 = -1} \\ \implies & \boxed{y = \dfrac{1}{2} \left( x^2 e^{x} + e^{x} - e^{-x} \right)} \end{aligned}

Solving the Bernoulli LDE:

d y d x + y = x 2 e x + x e x + e x \dfrac{dy}{dx} + y = x^2 e^x + x e^x + e^x

Comparing this to d y d x + y P ( x ) = Q ( x ) \dfrac{dy}{dx} + y P(x) = Q(x) , we get P ( x ) = 1 P(x) =1 and Q ( x ) = x 2 e x + x e x + e x Q(x) = x^2 e^x + x e^x + e^x .

The integrating factor I ( x ) = e P ( x ) d x = e d x = e x \mathfrak{I} (x) = e^{ \int P(x) \,dx} = e^{ \int \,dx} = e^x .

The solution is thus

y I ( x ) = Q ( x ) I ( x ) d x y e x = ( x 2 e 2 x + x e 2 x + e 2 x ) d x y e x = 1 2 ( x 2 e 2 x + e 2 x + C ) \begin{aligned} & y \mathfrak{I} (x) = \displaystyle \int Q(x) \cdot \mathfrak{I} (x) \,dx \\ \implies & y e^x = \displaystyle \int (x^2 e^{2x} + xe^{2x} + e^{2x}) \,dx \\ \implies & y e^x = \dfrac{1}{2} \left( x^2 e^{2x} + e^{2x} + C \right) \end{aligned}

Tapas Mazumdar - 3 years ago
Aaghaz Mahajan
May 13, 2018

@Tapas Mazumdar Kindly please upload the solution......or at least give a mere hint....

e x ( f ( x ) + f ( x ) ) d x = e x f ( x ) + C \displaystyle e^x \left( f(x) + f'(x) \right) \, dx = e^x f(x) + C . There you go! :)

Tapas Mazumdar - 3 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...