Let f : R → R given by y = f ( x ) be a real-valued continuous function satisfying the differential equation
d x 3 d 3 y − d x 2 d 2 y − d x d y + y = 2 e x
Given that f ( 0 ) = 0 , f ′ ( 0 ) = 1 and f ′ ′ ( 0 ) = 1 . Find the solution of the differential equation.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Correction: Partial fraction decomposition of ( s − 1 ) ( s 3 − s 2 − s + 1 ) s 2 − s + 2 = − 2 ( s + 1 ) 1 + 2 ( s − 1 ) 1 + ( s − 1 ) 3 1 meaning that you have an extra 2 in the last denominator. However, the inverse laplace transform of this term is correct in the final result.
Nice work using Laplace Transformation! :)
I'll state the differential coefficients as d x n d n y = f ′ ′ ′ ⋯ ′ ′ ′ (n times) ( x ) .
⟹ ⟹ ⟹ ⟹ ⟹ ⟹ ⟹ ⟹ ⟹ f ′ ′ ′ ( x ) − f ′ ′ ( x ) − f ′ ( x ) + f ( x ) = 2 e x e − x ( f ′ ′ ′ ( x ) − f ′ ′ ( x ) ) − e − x ( f ′ ( x ) − f ( x ) ) = 2 e − x f ′ ′ ( x ) − e − x f ( x ) = 2 x + c 1 e − x f ′ ′ ( x ) − e − x f ′ ( x ) + e − x f ′ ( x ) − e − x f ( x ) = 2 x + 1 e − x ( f ′ ′ ( x ) − f ′ ( x ) ) + e − x ( f ′ ( x ) − f ( x ) ) = 2 x + 1 e − x f ′ ( x ) + e − x f ( x ) = x 2 + x + c 2 e − x f ′ ( x ) + e − x f ( x ) = x 2 + x + 1 f ′ ( x ) + f ( x ) = x 2 e x + x e x + e x f ( x ) e x = 2 1 ( x 2 e 2 x + e 2 x + c 3 ) y = 2 1 ( x 2 e x + e x − e − x ) Integrate both sides using ∫ e x ( f ( x ) + f ′ ( x ) ) d x = e x f ( x ) + C Using f ′ ′ ( 0 ) = 1 and f ( 0 ) = 0 we get c 1 = 1 Integrate both sides Using f ′ ( 0 ) = 1 and f ( 0 ) = 0 we get c 2 = 1 Solving the simple Bernoulli LDE Using f ( 0 ) = 0 we get c 3 = − 1
Solving the Bernoulli LDE:
d x d y + y = x 2 e x + x e x + e x
Comparing this to d x d y + y P ( x ) = Q ( x ) , we get P ( x ) = 1 and Q ( x ) = x 2 e x + x e x + e x .
The integrating factor I ( x ) = e ∫ P ( x ) d x = e ∫ d x = e x .
The solution is thus
⟹ ⟹ y I ( x ) = ∫ Q ( x ) ⋅ I ( x ) d x y e x = ∫ ( x 2 e 2 x + x e 2 x + e 2 x ) d x y e x = 2 1 ( x 2 e 2 x + e 2 x + C )
@Tapas Mazumdar Kindly please upload the solution......or at least give a mere hint....
e x ( f ( x ) + f ′ ( x ) ) d x = e x f ( x ) + C . There you go! :)
Problem Loading...
Note Loading...
Set Loading...
This can be accomplished via a Laplace Transform:
y ′ ′ ′ − y ′ ′ − y ′ + y = 2 e x ;
or L [ y ( x ) ] = ( s 3 Y ( s ) − s 2 y ( 0 ) − s y ′ ( 0 ) − y ′ ′ ( 0 ) ) − ( s 2 Y ( s ) − s y ( 0 ) − y ′ ( 0 ) ) − ( s Y ( s ) − y ( 0 ) ) + Y ( s ) = s − 1 2 ;
or ( s 3 − s 2 − s + 1 ) Y ( s ) − s − 1 + 1 = s − 1 2 ;
or ( s 3 − s 2 − s + 1 ) Y ( s ) = s − 1 2 + s − 1 s ( s − 1 ) ;
or Y ( s ) = ( s − 1 ) ( s 3 − s 2 − s + 1 ) s 2 − s + 2 = − 2 ( s + 1 ) 1 + 2 ( s − 1 ) 1 + ( s − 1 ) 3 1 ;
or y ( x ) = L − 1 [ Y ( s ) ] = − 2 1 ⋅ e − x + 2 1 ⋅ e x + 2 1 ⋅ x 2 e x .