Let's do some calculus! (59)

Calculus Level 3

0 x 3 e x 1 d x = π a b \large \int_0^{\infty} \dfrac{x^3}{e^x -1} \,dx = \dfrac{\pi^a}{b}

Find a + b a+b .


For more problems on calculus, click here .


The answer is 19.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hassan Abdulla
May 22, 2018

let I = 0 x 3 e x 1 d x = 0 x 3 e x 1 e x d x I = 0 x 3 e x k = 0 ( e x ) k d x 0 < x < e x < 1 1 1 e x = k = 0 ( e x ) k sum of geometric series I = 0 ( k = 0 x 3 e ( k + 1 ) x ) d x = k = 0 ( 0 x 3 e ( k + 1 ) x d x ) I = k = 0 ( e ( k + 1 ) x [ x 3 ( k + 1 ) + 3 x 2 ( k + 1 ) 2 + 6 x ( k + 1 ) 3 + 6 ( k + 1 ) 4 ] 0 ) = 6 k = 0 1 ( k + 1 ) 4 I = 6 ζ ( 4 ) = 6 π 4 90 = π 4 15 4 + 15 = 19 \text{let I}=\int_0^{\infty}{\frac{x^3}{e^x-1}dx}=\int_0^{\infty}{\frac{x^3e^{-x}}{1-e^{-x}}dx} \\ \begin{matrix} I=\int_0^{\infty}{x^3e^{-x}\sum_{k=0}^\infty\left (e^{-x}\right )^k dx} & & & \color{#D61F06} 0<x<\infty\Rightarrow \left |e^{-x} \right |<1 \Rightarrow \frac{1}{1-e^{-x}}=\sum_{k=0}^\infty\left (e^{-x}\right )^k\text{sum of geometric series} \end{matrix} \\ I=\int_0^{\infty}{\left ( \sum_{k=0}^\infty x^3e^{-(k+1)x} \right )dx}=\sum_{k=0}^\infty \left ( \int_0^{\infty}{x^3e^{-(k+1)x}dx} \right ) \\ I=\sum_{k=0}^\infty \left (\left. -e^{-(k+1)x} \left [ \frac{x^3}{(k+1)}+\frac{3x^2}{(k+1)^2}+\frac{6x}{(k+1)^3}+\frac{6}{(k+1)^4} \right ] \right |_0^{\infty}\right )=6\sum_{k=0}^\infty {\frac{1}{(k+1)^4}} \\ I=6 \zeta(4)=6 \frac{\pi^4}{90}= \frac{\pi^4}{15} \\ 4+15=19

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...