Let's do some calculus! (61)

Calculus Level 3

lim x ( cosh ( π / x ) cos ( π / x ) ) x 2 = e π a \large \lim_{x \to \infty} {\left(\frac{\cosh \left( {\pi}/{x} \right)}{\cos \left( {\pi}/{x} \right)} \right)}^{x^2} \ = \ e^{\pi^a}

Find a a .


For more problems on calculus, click here .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

L = lim x ( cosh π x cos π x ) x 2 A 1 cases: lim x a ( f ( x ) ) g ( x ) = e lim x a g ( x ) ( f ( x ) 1 ) = exp ( lim x x 2 ( cosh π x cos π x 1 ) ) Let u = 1 x = exp ( lim u 0 cosh ( π u ) cos ( π u ) u 2 cos π u ) A 0/0 case, L’H o ˆ pital’s rule applies. = exp ( lim u 0 π sinh ( π u ) + π sin ( π u ) 2 u cos π u u 2 π sin π u ) Differentiate up and down, and a 0/0 case again. = exp ( lim u 0 π 2 cosh ( π u ) + π 2 cos ( π u ) 2 cos π u 2 u sin π u 2 u π sin π u u 2 π 2 cos π u ) Differentiate up and down w.r.t. u again. = e π 2 \begin{aligned} L & = \lim_{x \to \infty} \left(\frac {\cosh \frac \pi x}{\cos \frac \pi x}\right)^{x^2} & \small \color{#3D99F6} \text{A }1^\infty \text{ cases: }\lim_{x \to a} (f(x))^{g(x)} = e^{\lim_{x\to a}g(x)(f(x)-1)} \\ & = \exp \left(\lim_{x \to \infty} x^2 \left(\frac {\cosh \frac \pi x}{\cos \frac \pi x} - 1\right) \right) & \small \color{#3D99F6} \text{Let }u = \frac 1x \\ & = \exp \left(\lim_{u \to 0} \frac {\cosh (\pi u) - \cos (\pi u)}{u^2\cos \pi u} \right) & \small \color{#3D99F6} \text{A 0/0 case, L'Hôpital's rule applies.} \\ & = \exp \left(\lim_{u \to 0} \frac {\pi \sinh (\pi u) + \pi \sin (\pi u)}{2u\cos \pi u-u^2\pi \sin \pi u} \right) & \small \color{#3D99F6} \text{Differentiate up and down, and a 0/0 case again.} \\ & = \exp \left(\lim_{u \to 0} \frac {\pi^2 \cosh (\pi u) + \pi^2 \cos (\pi u)}{2\cos \pi u-2u\sin \pi u -2u\pi \sin \pi u-u^2 \pi^2 \cos \pi u} \right) & \small \color{#3D99F6} \text{Differentiate up and down w.r.t. }u \text{ again.} \\ & = e^{\pi^2} \end{aligned}

Therefore, a = 2 a=\boxed{2} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...