∫ − π / 2 π / 2 ( 1 + cos ( 2 x ) ) ( 1 + e x ) e x cos ( tan 2 ( x ) ) d x = b c a π
where a , b , c are integers with c square-free and gcd ( a , b ) = 1 . Find the value of a + b + c .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
A minor typo in the second line Sir.......there is a \b appearing before the d x
We have
I = ∫ 2 − π 2 π ( 1 + cos 2 x ) ( 1 + e x ) e x cos ( tan 2 x ) d x = 2 1 ∫ 2 − π 2 π cos 2 x ( 1 + e − x ) cos ( tan 2 x ) d x
Now, using the property ∫ a b f ( x ) d x = ∫ a b f ( a + b − x ) d x ,
I = 2 1 ∫ 2 − π 2 π cos 2 x ( 1 + e x ) cos ( tan 2 x ) d x
as tan 2 x and cos 2 x are both even functions.
∴ 2 I = 2 1 ∫ 2 − π 2 π cos 2 x ( 1 + e x ) ( e x + 1 ) cos ( tan 2 x ) = ∫ 0 2 π ( cos 2 x ) cos ( tan 2 x )
Substituting tan x = u , we get the Fresnel integral as x → ∞
2 I = ∫ 0 ∞ cos ( u 2 ) d u = 8 π = 2 2 π ⇒ I = 4 2 π
∴ a + b + c = 7
Problem Loading...
Note Loading...
Set Loading...
The integral is ∫ − 2 1 π 2 1 π ( 1 + cos 2 x ) ( e x + 1 ) e x cos ( tan 2 x ) d x = 2 1 ∫ − 2 1 π 2 1 π 1 + cos 2 x cos ( tan 2 x ) d x = 4 1 ∫ − 2 1 π 2 1 π cos ( tan 2 x ) sec 2 x d x = 4 1 ∫ − ∞ ∞ cos ( x 2 ) d x = 4 2 π for a solution of 1 + 4 + 2 = 7 .