Let's do some calculus! (8)

Calculus Level 5

0 4 π e t ( sin 6 a t + cos 4 a t ) d t 0 π e t ( sin 6 a t + cos 4 a t ) d t = L \dfrac{\displaystyle \int_{0}^{4\pi}{e^{t}\left(\sin^{6}at + \cos^{4}at\right)} \,dt}{\displaystyle \int_{0}^{\pi}{e^{t}\left(\sin^{6}at + \cos^{4}at\right)} \,dt} = L

Give your answer as the product of the numbers corresponding to the correct set of values of a a and L L .

\(\begin{array} {} \quad & A: & a=2, & L=\dfrac{e^{4\pi}-1}{e^{\pi}-1} & \implies 2 \\ & B: & a=4, & L=\dfrac{e^{4\pi}+1}{e^{\pi}+1} & \implies 3 \\ & C: & a=2, & L=\dfrac{e^{4\pi}+1}{e^{\pi}+1} & \implies 5 \\ & D: & a=4, & L=\dfrac{e^{4\pi}-1}{e^{\pi}-1} & \implies 7 \end{array}\)

Notation : e 2.71828 e \approx 2.71828 denotes the Euler's number .


For more problems on calculus, click here .


The answer is 14.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aryaman Maithani
Jun 22, 2018

Let N = 0 4 π e t ( sin 6 a t + cos 4 a t ) d t N = \int\limits_{0}^{4\pi}{e^{t}\left(\sin^{6}at + \cos^{4}at\right)} \,dt

D = 0 π e t ( sin 6 a t + cos 4 a t ) d t D = \int\limits_{0}^{\pi}{e^{t}\left(\sin^{6}at + \cos^{4}at\right)} \,dt

We have to find N D \dfrac{N}{D} .

N = 0 4 π e t ( sin 6 a t + cos 4 a t ) d t N = \int\limits_{0}^{4\pi}{e^{t}\left(\sin^{6}at + \cos^{4}at\right)} \,dt

= 0 π e t ( sin 6 a t + cos 4 a t ) d t + π 2 π e t ( sin 6 a t + cos 4 a t ) d t + 2 π 3 π e t ( sin 6 a t + cos 4 a t ) d t + 3 π 4 π e t ( sin 6 a t + cos 4 a t ) d t \text{ } = \int\limits_{0}^{\pi}{e^{t}\left(\sin^{6}at + \cos^{4}at\right)} \,dt + \int\limits_{\pi}^{2\pi}{e^{t}\left(\sin^{6}at + \cos^{4}at\right)} \,dt + \int\limits_{2\pi}^{3\pi}{e^{t}\left(\sin^{6}at + \cos^{4}at\right)} \,dt + \int\limits_{3\pi}^{4\pi}{e^{t}\left(\sin^{6}at + \cos^{4}at\right)} \,dt

After the following subsitutions: t π = u , t 2 π = v , t 3 π = w t-\pi=u, t-2\pi=v, t-3\pi=w in the second, third and fourth integrals respectively, it is seen that the trigonometry functions do not change regardless of a a being 2 2 or 4 4 . Since it is definite integration, t t is a dummy variable and therefore:

N = 0 π e t ( sin 6 a t + cos 4 a t ) d t + 0 π e t + π ( sin 6 a t + cos 4 a t ) d t + 0 π e t + 2 π ( sin 6 a t + cos 4 a t ) d t + 0 π e t + 3 π ( sin 6 a t + cos 4 a t ) d t N = \int\limits_{0}^{\pi}{e^{t}\left(\sin^{6}at + \cos^{4}at\right)} \,dt + \int\limits_{0}^{\pi}{e^{t+\pi}\left(\sin^{6}at + \cos^{4}at\right)} \,dt + \int\limits_{0}^{\pi}{e^{t+2\pi}\left(\sin^{6}at + \cos^{4}at\right)} \,dt + \int\limits_{0}^{\pi}{e^{t+3\pi}\left(\sin^{6}at + \cos^{4}at\right)} \,dt

N = ( 1 + e π + e 2 π + e 3 π ) 0 π e t ( sin 6 a t + cos 4 a t ) d t = ( 1 + e π + e 2 π + e 3 π ) D N = (1 + e^\pi + e^{2\pi} + e^{3\pi})\int\limits_{0}^{\pi}{e^{t}\left(\sin^{6}at + \cos^{4}at\right)} \,dt = (1 + e^\pi + e^{2\pi} + e^{3\pi})\cdot D

N D = ( 1 + e π + e 2 π + e 3 π ) = e 4 π 1 e π 1 \implies \dfrac{N}{D} = (1 + e^\pi + e^{2\pi} + e^{3\pi}) = \boxed{ \dfrac{e^{4\pi}-1}{e^\pi - 1} }

(The last equation was simplified using the formula for geometric progression.)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...