A number theory problem.

1978 1979 + 1980 21 + 1958 1980 1979 1978 1979 = ? \large \frac {1978 \cdot 1979 + 1980 \cdot 21 + 1958}{1980 \cdot 1979 - 1978 \cdot 1979 } = ?

Solve the above without using a calculator.


The answer is 1000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Aug 15, 2017

X = 1978 1979 + 1980 21 + 1958 1980 1979 1978 1979 Let a = 1980 = ( a 2 ) ( a 1 ) + 21 a + a 22 a ( a 1 ) ( a 2 ) ( a 1 ) = a 2 3 a + 2 + 21 a + a 22 a 2 a ( a 2 3 a + 2 ) = a 2 + 19 a 20 2 a 2 = ( a 1 ) ( a + 20 ) 2 ( a 1 ) = a + 20 2 = 1980 + 20 2 = 1000 \begin{aligned} X & = \frac {1978 \cdot 1979 + 1980 \cdot 21 + 1958}{1980 \cdot 1979 - 1978 \cdot 1979} & \small \color{#3D99F6} \text{Let } a = 1980 \\ & = \frac {(a-2)(a-1)+21a + a-22}{a(a-1)-(a-2)(a-1)} \\ & = \frac {a^2-3a+2+21a + a-22}{a^2-a-(a^2-3a+2)} \\ & = \frac {a^2+19a -20}{2a-2} \\ & = \frac {(a-1)(a+20)}{2(a-1)} \\ & = \frac {a+20}2 = \frac {1980+20}2 = \boxed{1000} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...