Let's find real number!

Algebra Level 2

Find all real numbers x x for which 8 x + 2 7 x 1 2 x + 1 8 x = 7 6 \dfrac{8^x+27^x}{12^x + 18^x}= \dfrac76 .

0 3 -2 and -3 2 1 and -1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Novril Razenda
Jul 2, 2016

Relevant wiki: Real Numbers

8 x + 2 7 x 1 2 x + 1 8 x = 7 6 2 3 x + 3 3 x 2 2 x 3 x + 2 x 3 2 x = 7 6 ( 2 x + 3 x ) ( 2 2 x 2 x 3 x + 3 2 x ) 2 x 3 x ( 2 x + 3 x ) = 7 6 2 2 x 2 x 3 x + 3 2 x 2 x 3 x = 7 6 ( 2 3 ) x 1 + ( 3 2 ) x = 7 6 Let y = ( 2 3 ) x y 1 1 y = 7 6 Multiplying both sides with 6 y 6 y 2 6 y + 6 = 7 y 6 y 2 13 y + 6 = 0 ( 3 y 2 ) ( 2 y 3 ) = 0 \begin{aligned} \frac {8^x+27^x}{12^x+18^x} & = \frac 76 \\ \frac {2^{3x}+3^{3x}}{2^{2x}3^x+2^x3^{2x}} & = \frac 76 \\ \frac {(2^x+3^x)(2^{2x} -2^x3^x+3^{2x})}{2^x3^x(2^x+3^x)} & = \frac 76 \\ \frac {2^{2x} -2^x3^x+3^{2x}}{2^x3^x} & = \frac 76 \\ \left(\frac 23\right)^x - 1 + \left(\frac 32 \right)^x & = \frac 76 & \small \color{#3D99F6} \text{Let } y = \left(\frac 23\right)^x \\ y - 1 - \frac 1y & = \frac 76 & \small \color{#3D99F6} \text{Multiplying both sides with } 6y \\ 6y^2 - 6y + 6 & = 7y \\ 6y^2 - 13y + 6 & = 0 \\ (3y-2)(2y-3) & = 0 \end{aligned}

y = ( 2 3 ) x = { 2 3 3 2 = ( 2 3 ) ± 1 x = ± 1 \implies y =\left(\dfrac 23\right)^x = \begin{cases} \dfrac 23 \\ \dfrac 32 \end{cases} = \left(\dfrac 23\right)^{\pm 1} \implies x = \boxed{\pm 1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...