Let's get a little trigy

Geometry Level 3

What's the range of the function f ( x ) = sin ( x ) 1 3 2 cos ( x ) 2 sin ( x ) f(x)=\dfrac{\sin(x)-1}{\sqrt{3-2\cos(x)-2\sin(x)}} for 0 x 2 π 0≤x≤2π ?

[ 2 , 0 ] \left[-\sqrt{2},0\right] [ 2 2 , 0 ] \left[-\dfrac{\sqrt{2}}{2},0 \right] [ 3 , 0 ] \left[-\sqrt{3},0\right] [ 1 , 0 ] [-1,0]

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Hosam Hajjir
Jun 17, 2019

The given function can be written as

f ( x ) = sin ( x ) 1 ( cos ( x ) 1 ) 2 + ( sin ( x ) 1 ) 2 f(x) = \dfrac{ \sin(x) - 1 }{ \sqrt{ (\cos(x) - 1 )^2 + (\sin(x) - 1 )^2 } }

which is exactly the sine of the angle that the vector from the point ( 1 , 1 ) (1,1) to the point ( cos ( x ) , sin ( x ) ) (\cos(x) ,\sin(x)) makes with the positive x-axis. This angle is clearly always in the third quadrant, so its sine is between 1 -1 and 0 0 .

The angle can also be in the second quadrant.

Atomsky Jahid - 1 year, 11 months ago
Chew-Seong Cheong
Jun 21, 2019

Thanks for the idea from @Hosam Hajjir , my solution uses half-angle tangent substitution .

Given that f ( x ) = sin x 1 3 2 cos x 2 sin x = sin x 1 3 2 2 sin ( 2 + π 4 ) f(x) = \dfrac {\sin x-1}{\sqrt{3-2\cos x - 2 \sin x}} = \dfrac {\sin x -1}{\sqrt{3-2\sqrt 2\sin \left(2+\frac \pi 4\right)}} . Note that g ( x ) = sin x 1 [ 2 , 0 ] g(x) = \sin x - 1 \in [-2, 0] and h ( x ) = 3 2 2 sin ( 2 + π 4 ) [ 3 2 2 , 3 + 2 2 ] h(x) = \sqrt{3-2\sqrt 2\sin \left(2+\frac \pi 4\right)} \in [\sqrt{3-2\sqrt 2}, \sqrt{3+2\sqrt 2}] . That is g ( x ) 0 g(x) \le 0 and h ( x ) > 0 h(x) > 0 f ( x ) 0 \implies f(x) \le 0 .

Now consider the lower limit of f ( x ) f(x) as follows:

f ( x ) = sin x 1 3 2 cos x 2 sin x = ( 1 sin x ) ( 1 cos x ) 2 + ( 1 sin x ) 2 For sin x 1 0 = 1 ( 1 cos x 1 sin x ) 2 + 1 Let t = tan x 2 sin x = 2 t 1 + t 2 = 1 4 t 4 ( t 1 ) 4 + 1 and cos x = 1 t 2 1 + t 2 f ( x ) 1 Equality occurs when t = 0 or x = 0 , 2 π \begin{aligned} f(x) & = \frac {\sin x-1}{\sqrt{3-2\cos x - 2 \sin x}} \\ & = \frac {-(1-\sin x)}{\sqrt{(1-\cos x)^2 +(1-\sin x)^2}} & \small \color{#3D99F6} \text{For }\sin x - 1 \ne 0 \\ & = \frac {-1}{\sqrt{\left(\frac {1-\cos x}{1-\sin x}\right)^2 + 1}} & \small \color{#3D99F6} \text{Let }t = \tan \frac x2 \implies \sin x = \frac {2t}{1+t^2} \\ & = \frac {-1}{\sqrt{\frac {4 t^4}{(t-1)^4} + 1}} & \small \color{#3D99F6} \text{and } \cos x = \frac {1-t^2}{1+t^2} \\ \implies f(x) & \ge - 1 & \small \color{#3D99F6} \text{Equality occurs when }t = 0 \text{ or }x = 0,2\pi \end{aligned}

Therefore, f ( x ) [ 1 , 0 ] f(x) \in \boxed{[-1,0]} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...