∫ 0 π / 2 cot ( x ) + tan ( x ) cot ( x ) d x
The value of the integral above can be written as b a π c , where a and b are positive coprime integers. Enter a + b + c .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Of course, it can be done the hard way.
∫ tan ( x ) + cot ( x ) cot ( x ) d x ⇒ 4 1 ( 2 tan − 1 ( tan ( x ) ) − lo g ( 1 − tan ( x ) ) − lo g ( tan ( x ) + 1 ) + lo g ( tan ( x ) + 1 ) + tan ( x ) cot ( x ) ( lo g ( 1 − tan ( x ) ) + lo g ( tan ( x ) + 1 ) − lo g ( sec 2 ( x ) ) ) )
You need to take the limit of the expression to get the lower limit of 0 .
You need to take the limit of the expression from below to get the upper limit of 4 π .
This give the answer of 6 per given formula.
∫ tan ( x ) + cot ( x ) cot ( x ) d x
∫ tan ( x ) − cot ( x ) tan ( x ) cot ( x ) − cot ( x ) d x
∫ ( tan ( x ) − cot ( x ) tan ( x ) cot ( x ) − tan ( x ) − cot ( x ) cot ( x ) ) d x
∫ tan ( x ) − cot ( x ) tan ( x ) cot ( x ) d x − ∫ tan ( x ) − cot ( x ) cot ( x ) d x
∫ tan ( x ) − cot ( x ) tan ( x ) cot ( x ) × ( tan ( x ) ) ( sec 2 ( x ) ) ( tan ( x ) ) ( sec 2 ( x ) ) d x − ∫ tan ( x ) − cot ( x ) cot ( x ) d x
u = x tan ( x ) and d u = sec 2 ( x ) d x
∫ u 4 − 1 u d u − ∫ tan ( x ) − cot ( x ) cot ( x ) d x
s = u 2 and d s = 2 u d u
2 1 ∫ s 2 − 1 1 d s − ∫ tan ( x ) − cot ( x ) cot ( x ) d x
− 2 1 ∫ 1 − s 2 1 d s − ∫ tan ( x ) − cot ( x ) cot ( x ) d x
− 2 1 tanh ( s ) − ∫ tan ( x ) − cot ( x ) cot ( x ) d x
− 2 1 tanh ( s ) − ∫ − ( sec 2 ( x ) ) + ( sec 2 ( x ) ) ( tan 2 ( x ) ) sec 2 ( x ) d x
− 2 1 tanh ( s ) − ∫ − ( sec 2 ( x ) ) + ( sec 2 ( x ) ) ( tan 2 ( x ) ) sec 2 ( x ) ( tan ( x ) ) ( sec 2 ( x ) ) ( tan ( x ) ) ( sec 2 ( x ) ) d x
− 2 1 tanh ( s ) − ∫ − ( sec 2 ( x ) ) + ( sec 2 ( x ) ) ( tan 2 ( x ) ) sec 2 ( x ) d x
Using sec 2 ( x ) = tan 2 ( x ) + 1
− 2 1 tanh ( s ) − ∫ − 1 + tan 4 ( x ) sec 2 ( x ) d x
p = tan ( x ) and d p = sec ( x ) d x
− 2 1 tanh ( s ) − ∫ p 4 − 1 1 d p
− 2 1 tanh ( s ) − ∫ ( − 2 ( p 2 + 1 ) 1 − 4 ( p + 1 ) 1 + 4 ( p − 1 ) 1 ) d p
− 2 1 tanh ( s ) + 2 1 ∫ p 2 + 1 1 d p + 4 1 ∫ p + 1 1 d p − 4 1 ∫ p − 1 1 d p
− 2 1 tanh ( s ) + 2 1 tan − 1 ( p ) + 4 1 lo g ( p + 1 ) − 4 1 lo g ( p − 1 )
− 2 1 tanh ( t a n ( x ) 2 ) + 2 1 tan − 1 ( t a n ( x ) ) + 4 1 lo g ( t a n ( x ) + 1 ) − 4 1 lo g ( t a n ( x ) − 1 )
Here is another way of doing it.
∫ cot x + tan x cot x d x = ∫ cos x + sin x cos x d x = 2 1 ∫ sin ( x + π / 4 ) cos x d x = 2 1 ∫ sin ( x + π / 4 ) cos ( x + π / 4 − π / 4 ) d x = 2 1 ∫ sin ( x + π / 4 ) cos ( x + π / 4 ) + sin ( x + π / 4 ) d x
This integral is easy enough to integrate directly.
2 1 × ( ln ( sin ( x + π / 4 ) ) + x )
Substitute the limit of integration in and you get the answer pretty quickly.
I = ∫ 0 π / 2 cot ( x ) + tan ( x ) cot ( x ) d x = − ∫ π / 2 0 cot ( π / 2 − t ) + tan ( π / 2 − t ) cot ( π / 2 − t ) d t = ∫ 0 π / 2 tan ( t ) + cot ( t ) tan ( t ) d x = I
2 I = ∫ 0 π / 2 ( cot ( x ) + tan ( x ) cot ( x ) + cot ( x ) + tan ( x ) tan ( x ) ) d x = ∫ 0 π / 2 cot ( x ) + tan ( x ) cot ( x ) + tan ( x ) d x = ∫ 0 π / 2 d t = 2 π
Hence I = 4 π . So 1+4+1=6
I = ∫ 0 2 π cot x + tan x cot x d x = 2 1 ∫ 0 2 π ⎝ ⎛ cot x + tan x cot x + cot ( 2 π − x ) + tan ( 2 π − x ) cot ( 2 π − x ) ⎠ ⎞ d x = 2 1 ∫ 0 2 π ( cot x + tan x cot x + tan x + cot x tan x ) d x = 2 1 ∫ 0 2 π d x = 4 π Using ∫ a b f ( x ) d x = ∫ a b f ( a + b − x ) d x
Therefore, a + b + c = 1 + 1 + 4 = 6 .
@Moshe M , you have to mention: a and b are coprime integers, if not ( a , b ) = ( 1 , 4 ) , ( 2 , 8 ) , ( 3 , 1 2 ) , . . . are all solutions.
∫ 0 2 1 π cot x + tan x cot x d x = I = ∫ 0 2 1 π cos x + sin x cos x d x = 2 π − ∫ 0 2 1 π cos x + sin x sin x = 2 π − ∫ 0 2 1 π sin ( 2 π − x ) + cos ( 2 π − x ) cos ( 2 π − x ) d x = 2 π − I 2 I = 2 π ⟹ I = 4 π thus a + b + c = 6 . We use the identity ∫ a b f ( x ) d x = ∫ a b f ( a + b − x ) d x
Problem Loading...
Note Loading...
Set Loading...
(Almost) no trig needed! Let the integral be I . With the substitution y = 2 π − x we find
I = ∫ 0 2 π cot x + tan x tan x d x = ∫ 0 2 π cot y + tan y cot y d y
Adding the two forms of I we get
2 I = ∫ 0 2 π cot x + tan x cot x + tan x d x = ∫ 0 2 π d x = 2 π
and so I = 4 π . Writing this in the required form we have ( a , b , c ) = ( 1 , 4 , 1 ) and a + b + c = 6 .