Let's get trigy

Calculus Level 2

0 π / 2 cot ( x ) cot ( x ) + tan ( x ) d x \int_{0}^{\pi/2} \frac{\sqrt{\cot(x)}}{\sqrt{\cot(x)} + \sqrt{\tan(x)}}dx

The value of the integral above can be written as a π c b \dfrac{a\pi^{c}}{b} , where a a and b b are positive coprime integers. Enter a + b + c a+b+c .

8 4 6 5

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Chris Lewis
Jun 12, 2019

(Almost) no trig needed! Let the integral be I I . With the substitution y = π 2 x y=\frac{\pi}{2}-x we find

I = 0 π 2 tan x cot x + tan x d x = 0 π 2 cot y cot y + tan y d y I=\int_0^{\frac{\pi}{2}} \frac{\sqrt{\tan{x}}}{\sqrt{\cot{x}}+\sqrt{\tan{x}}} dx = \int_0^{\frac{\pi}{2}} \frac{\sqrt{\cot{y}}}{\sqrt{\cot{y}}+\sqrt{\tan{y}}} dy

Adding the two forms of I I we get

2 I = 0 π 2 cot x + tan x cot x + tan x d x = 0 π 2 d x = π 2 2I=\int_0^{\frac{\pi}{2}} \frac{\sqrt{\cot{x}}+\sqrt{\tan{x}}}{\sqrt{\cot{x}}+\sqrt{\tan{x}}} dx = \int_0^{\frac{\pi}{2}} dx = \frac{\pi}{2}

and so I = π 4 I=\frac{\pi}{4} . Writing this in the required form we have ( a , b , c ) = ( 1 , 4 , 1 ) (a,b,c)=(1,4,1) and a + b + c = 6 a+b+c=\boxed6 .

Of course, it can be done the hard way.

cot ( x ) tan ( x ) + cot ( x ) d x 1 4 ( 2 tan 1 ( tan ( x ) ) log ( 1 tan ( x ) ) log ( tan ( x ) + 1 ) + log ( tan ( x ) + 1 ) + tan ( x ) cot ( x ) ( log ( 1 tan ( x ) ) + log ( tan ( x ) + 1 ) log ( sec 2 ( x ) ) ) ) \int \frac{\sqrt{\cot (x)}}{\sqrt{\tan (x)}+\sqrt{\cot (x)}} \, dx \Rightarrow \\ \frac{1}{4} \left(2 \tan ^{-1}(\tan (x))-\log \left(1-\sqrt{\tan (x)}\right)- \log \left(\sqrt{\tan (x)}+1\right)+\log (\tan (x)+1)+ \\ \sqrt{\tan (x)} \sqrt{\cot (x)} \left(\log (1-\tan (x))+\log (\tan (x)+1)-\log \left(\sec ^2(x)\right)\right)\right)

You need to take the limit of the expression to get the lower limit of 0 0 .

You need to take the limit of the expression from below to get the upper limit of π 4 \frac{\pi}{4} .

This give the answer of 6 per given formula.

A Former Brilliant Member - 1 year, 12 months ago

Log in to reply

How did you derive this indefinite integral?

Pi Han Goh - 1 year, 11 months ago

cot ( x ) tan ( x ) + cot ( x ) d x \int \frac{\sqrt{\cot(x)}}{\sqrt{\tan(x)}+\sqrt{\cot(x)}} \, dx

tan ( x ) cot ( x ) cot ( x ) tan ( x ) cot ( x ) d x \int \frac{\sqrt{\tan(x)} \sqrt{\cot(x)}-\cot(x)}{\tan(x) -\cot(x)} \, dx

( tan ( x ) cot ( x ) tan ( x ) cot ( x ) cot ( x ) tan ( x ) cot ( x ) ) d x \int \left(\frac{\sqrt{\tan(x)} \sqrt{\cot(x)}}{\tan(x)-\cot(x)}-\frac{\cot(x)}{\tan(x)-\cot(x)}\right) \, dx

tan ( x ) cot ( x ) tan ( x ) cot ( x ) d x cot ( x ) tan ( x ) cot ( x ) d x \int \frac{\sqrt{\tan(x)} \sqrt{\cot(x)}}{\tan(x)-\cot(x)} \, dx-\int \frac{\cot(x)}{\tan(x)-\cot(x)} \, dx

tan ( x ) cot ( x ) tan ( x ) cot ( x ) × ( tan ( x ) ) ( sec 2 ( x ) ) ( tan ( x ) ) ( sec 2 ( x ) ) d x cot ( x ) tan ( x ) cot ( x ) d x \int \frac{\sqrt{\tan(x)} \sqrt{\cot(x)}}{\tan(x)-\cot(x)} \times \frac{(\tan(x)) \left(\sec ^2(x)\right)}{(\tan(x)) \left(\sec ^2(x)\right)}\, dx-\int \frac{\cot(x)}{\tan(x)-\cot(x)} \, dx

u = x tan ( x ) u=x \tan(x) and d u = sec 2 ( x ) d x du=\sec^2(x)\,dx

u u 4 1 d u cot ( x ) tan ( x ) cot ( x ) d x \int \frac{u}{u^4-1} \, du-\int \frac{\cot(x)}{\tan(x)-\cot(x)} \, dx

s = u 2 s=u^2 and d s = 2 u d u ds=2u\,du

1 2 1 s 2 1 d s cot ( x ) tan ( x ) cot ( x ) d x \frac{1}{2} \int \frac{1}{s^2-1} \, ds-\int \frac{\cot(x)}{\tan(x)-\cot(x)} \, dx

1 2 1 1 s 2 d s cot ( x ) tan ( x ) cot ( x ) d x -\frac{1}{2} \int \frac{1}{1-s^2} \, ds-\int \frac{\cot(x)}{\tan(x)-\cot(x)} \, dx

1 2 tanh ( s ) cot ( x ) tan ( x ) cot ( x ) d x -\frac{1}{2}\tanh(s)-\int \frac{\cot(x)}{\tan(x)-\cot(x)} \, dx

1 2 tanh ( s ) sec 2 ( x ) ( sec 2 ( x ) ) + ( sec 2 ( x ) ) ( tan 2 ( x ) ) d x -\frac{1}{2}\tanh(s)-\int \frac{\sec ^2(x)}{-\left(\sec ^2(x)\right)+\left(\sec ^2(x)\right) \left(\tan ^2(x)\right)} \, dx

1 2 tanh ( s ) sec 2 ( x ) ( sec 2 ( x ) ) + ( sec 2 ( x ) ) ( tan 2 ( x ) ) ( tan ( x ) ) ( sec 2 ( x ) ) ( tan ( x ) ) ( sec 2 ( x ) ) d x -\frac{1}{2}\tanh(s)-\int \frac{\sec ^2(x)}{-\left(\sec ^2(x)\right)+\left(\sec ^2(x)\right) \left(\tan ^2(x)\right)} \frac{(\tan(x)) \left(\sec ^2(x)\right)}{(\tan(x)) \left(\sec ^2(x)\right)} \, dx

1 2 tanh ( s ) sec 2 ( x ) ( sec 2 ( x ) ) + ( sec 2 ( x ) ) ( tan 2 ( x ) ) d x -\frac{1}{2}\tanh(s)-\int \frac{\sec ^2(x)}{-\left(\sec ^2(x)\right)+\left(\sec ^2(x)\right) \left(\tan ^2(x)\right)} \, dx

Using sec 2 ( x ) = tan 2 ( x ) + 1 \sec ^2(x)=\tan ^2(x)+1

1 2 tanh ( s ) sec 2 ( x ) 1 + tan 4 ( x ) d x -\frac{1}{2}\tanh(s)-\int \frac{\sec ^2(x)}{-1+\tan ^4(x)} \, dx

p = tan ( x ) p=\tan(x) and d p = sec ( x ) d x dp=\sec(x)\,dx

1 2 tanh ( s ) 1 p 4 1 d p -\frac{1}{2}\tanh(s)-\int \frac{1}{p^4-1} \, dp

1 2 tanh ( s ) ( 1 2 ( p 2 + 1 ) 1 4 ( p + 1 ) + 1 4 ( p 1 ) ) d p -\frac{1}{2}\tanh(s)-\int \left(-\frac{1}{2 \left(p^2+1\right)}-\frac{1}{4 (p+1)}+\frac{1}{4 (p-1)}\right) \, dp

1 2 tanh ( s ) + 1 2 1 p 2 + 1 d p + 1 4 1 p + 1 d p 1 4 1 p 1 d p -\frac{1}{2}\tanh(s)+\frac{1}{2}\int \frac{1}{p^2+1} \, dp+\frac{1}{4}\int \frac{1}{p+1} \, dp-\frac{1}{4}\int \frac{1}{p-1} \, dp

1 2 tanh ( s ) + 1 2 tan 1 ( p ) + 1 4 log ( p + 1 ) 1 4 log ( p 1 ) -\frac{1}{2}\tanh(s)+\frac{1}{2}\tan^{-1}(p) +\frac{1}{4}\log(p+1)-\frac{1}{4}\log(p-1)

1 2 tanh ( t a n ( x ) 2 ) + 1 2 tan 1 ( t a n ( x ) ) + 1 4 log ( t a n ( x ) + 1 ) 1 4 log ( t a n ( x ) 1 ) -\frac{1}{2}\tanh(tan(x)^2)+\frac{1}{2}\tan^{-1}(tan(x)) +\frac{1}{4}\log(tan(x)+1)-\frac{1}{4}\log(tan(x)-1)

A Former Brilliant Member - 1 year, 11 months ago

Here is another way of doing it.

cot x cot x + tan x d x = cos x cos x + sin x d x = 1 2 cos x sin ( x + π / 4 ) d x = 1 2 cos ( x + π / 4 π / 4 ) sin ( x + π / 4 ) d x = 1 2 cos ( x + π / 4 ) + sin ( x + π / 4 ) sin ( x + π / 4 ) d x \displaystyle \int \frac{\sqrt{\cot{x}}}{\sqrt{\cot{x}}+\sqrt{\tan{x}}} dx =\int \frac{\cos{x}}{\cos{x}+\sin{x}} dx=\frac{1}{\sqrt{2}} \int \frac{\cos{x}}{\sin{(x+\pi/4)}} dx = \frac{1}{\sqrt{2}} \int \frac{\cos{(x+\pi/4-\pi/4)}}{\sin{(x+\pi/4)}} dx = \frac{1}{2} \int \frac{\cos{(x+\pi/4)}+\sin{(x+\pi/4)}}{\sin{(x+\pi/4)}} dx

This integral is easy enough to integrate directly.

1 2 × ( ln ( sin ( x + π / 4 ) ) + x ) \displaystyle \frac{1}{2} \times \left (\ln{(\sin{(x+\pi/4)})} +x \right )

Substitute the limit of integration in and you get the answer pretty quickly.

Manifold M
Jun 12, 2019

I = 0 π / 2 cot ( x ) cot ( x ) + tan ( x ) d x = π / 2 0 cot ( π / 2 t ) cot ( π / 2 t ) + tan ( π / 2 t ) d t = 0 π / 2 tan ( t ) tan ( t ) + cot ( t ) d x = I I= \int_{0}^{\pi/2} \frac{\sqrt{\cot(x)}}{\sqrt{\cot(x)} + \sqrt{\tan(x)}}dx = -\int_{\pi/2}^{0} \frac{\sqrt{\cot(\pi/2-t)}}{\sqrt{\cot(\pi/2-t)} + \sqrt{\tan(\pi/2-t)}}dt = \int_{0}^{\pi/2} \frac{\sqrt{\tan(t)}}{\sqrt{\tan(t)} + \sqrt{\cot(t)}}dx = I

2 I = 0 π / 2 ( cot ( x ) cot ( x ) + tan ( x ) + tan ( x ) cot ( x ) + tan ( x ) ) d x = 0 π / 2 cot ( x ) + tan ( x ) cot ( x ) + tan ( x ) d x = 0 π / 2 d t = π 2 2I = \int_{0}^{\pi/2} (\frac{\sqrt{\cot(x)}}{\sqrt{\cot(x)} + \sqrt{\tan(x)}} + \frac{\sqrt{\tan(x)}}{\sqrt{\cot(x)} + \sqrt{\tan(x)}})dx =\int_{0}^{\pi/2} \frac{\sqrt{\cot(x)} + \sqrt{\tan(x)}}{\sqrt{\cot(x)} + \sqrt{\tan(x)}}dx = \int_{0}^{\pi/2} dt = \frac{\pi}{2}

Hence I = π 4 I=\frac{\pi}{4} . So 1+4+1=6

Chew-Seong Cheong
Jun 13, 2019

I = 0 π 2 cot x cot x + tan x d x Using a b f ( x ) d x = a b f ( a + b x ) d x = 1 2 0 π 2 ( cot x cot x + tan x + cot ( π 2 x ) cot ( π 2 x ) + tan ( π 2 x ) ) d x = 1 2 0 π 2 ( cot x cot x + tan x + tan x tan x + cot x ) d x = 1 2 0 π 2 d x = π 4 \begin{aligned} I & = \int_0^\frac \pi 2 \frac {\sqrt{\cot x}}{\sqrt{\cot x}+\sqrt{\tan x}} dx & \small \color{#3D99F6} \text{Using } \int_a^b f(x)\ dx = \int_a^b f(a+b-x) \ dx \\ & = \frac 12 \int_0^\frac \pi 2 \left( \frac {\sqrt{\cot x}}{\sqrt{\cot x}+\sqrt{\tan x}} + \frac {\sqrt{\cot \left(\frac \pi 2- x\right)}}{\sqrt{\cot \left(\frac \pi 2- x\right)}+\sqrt{\tan \left(\frac \pi 2- x\right)}} \right) dx \\ & = \frac 12 \int_0^\frac \pi 2 \left( \frac {\sqrt{\cot x}}{\sqrt{\cot x}+\sqrt{\tan x}} + \frac {\sqrt{\tan x}}{\sqrt{\tan x}+\sqrt{\cot x}} \right) dx \\ & = \frac 12 \int_0^\frac \pi 2 dx = \frac \pi 4 \end{aligned}

Therefore, a + b + c = 1 + 1 + 4 = 6 a+b+c = 1+1+4 = \boxed 6 .

@Moshe M , you have to mention: a a and b b are coprime integers, if not ( a , b ) = ( 1 , 4 ) , ( 2 , 8 ) , ( 3 , 12 ) , . . . (a,b) = (1,4), (2,8), (3,12), ... are all solutions.

Chew-Seong Cheong - 1 year, 12 months ago

Log in to reply

Of course! Sorry : )

Manifold M - 1 year, 12 months ago
Naren Bhandari
Jun 13, 2019

0 1 2 π cot x cot x + tan x d x = I = 0 1 2 π cos x cos x + sin x d x = π 2 0 1 2 π sin x cos x + sin x = π 2 0 1 2 π cos ( π 2 x ) sin ( π 2 x ) + cos ( π 2 x ) d x = π 2 I 2 I = π 2 I = π 4 \int_0^{\frac{1}{2}\pi} \dfrac{\sqrt {\cot x} }{\sqrt{\cot x }+\sqrt{\tan x}}\,dx = I =\int_0^{\frac{1}{2}\pi} \dfrac{\cos x}{\cos x+ \sin x}\,dx \\ = \dfrac{\pi}{2} - \int_0^{\frac{1}{2}\pi}\dfrac{\sin x }{\cos x+\sin x}=\dfrac{\pi}{2} -\int_0^{\frac{1}{2}\pi}\dfrac{\cos \left(\frac{\pi}{2} -x\right)}{\sin\left(\frac{\pi}{2}-x\right)+\cos\left(\frac{\pi}{2}-x\right)}\,dx= \frac{\pi}{2} -I \\ 2I= \dfrac{\pi}{2}\implies I =\dfrac{\pi}{4} thus a + b + c = 6 a+b+c=6 . We use the identity a b f ( x ) d x = a b f ( a + b x ) d x \int_a^b f(x)\,dx = \int_a^b f(a+b-x)\,dx

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...