Let's go into the future!

Algebra Level 4

Find the number of terms with a non-zero coefficient in the expansion of: ( 1 + x ) 2018 + ( 1 + x 2 ) 2017 + ( 1 + x 3 ) 2016 {(1+x)}^{2018}+{(1+x^2)}^{2017}+{(1+x^3)}^{2016}


The answer is 4035.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aditya Kumar
Jan 15, 2016

Let P, Q and R be the terms of each of the expansions.

  • n ( P ) = 2019 n(P)=2019 S i m p l e b i n o m i a l e x p a n s i o n \color{#3D99F6} {Simple\quad binomial\quad expansion}

  • n ( Q ) = 2018 n(Q)=2018 S i m p l e b i n o m i a l e x p a n s i o n \color{#3D99F6} {Simple\quad binomial\quad expansion}

  • n ( R ) = 2017 n(R)=2017 S i m p l e b i n o m i a l e x p a n s i o n \color{#3D99F6} {Simple\quad binomial\quad expansion}

  • n ( P , Q ) = 1010 n(P,Q)=1010 A l l t h e t e r m s i n Q l e s s o r e q u a l t o 2018 a r e i n P . T h e n N ( P , Q ) = 1010 b e c a u s e e x p o n e n t s i n Q a r e e v e n ) \color{#3D99F6} {All\quad the\quad terms\quad in\quad Q\quad less\quad or\quad equal\quad to\quad 2018\quad are \quad in\quad P. \quad Then\quad N(P,Q)=1010 \quad because \quad exponents\quad in\quad Q \quad are\quad even)}

  • n ( Q , R ) = 673 n(Q,R)=673 A l l t h e t e r m s i n R o f t h e f o r m 6 k l e s s v o r e q u a l t o 4034 a r e i n Q . T h e y a r e 0 , 6 , 12 , 18 , . . . , 4032. \color{#3D99F6} {All\quad the \quad terms\quad in\quad R\quad of \quad the\quad form \quad 6k\quad lessv or\quad equal\quad to\quad 4034\quad are\quad in\quad Q. \\\quad They\quad are \quad 0,6,12,18,...,4032.}

  • n ( P , R ) = 673 n(P,R)=673 A l l t h e t e r m s i n R t o 2018 a r e i n P . T h e y a r e 0 , 3 , 6 , . . . 2016. \color{#3D99F6} {All\quad the\quad terms\quad in\quad R\quad to\quad 2018\quad are\quad in\quad P. \\\quad They\quad are\quad 0,3,6,...2016.}

  • n ( P , Q , R ) = 337 n(P,Q,R)=337 I t i s e a s y t o c h e c k t h a t w e a r e t a l k i n g a b o u t t h e 6 k o n P l e s s o r e q u a l t o 2018 : 0 , 6 , 12 , . . . , 2016. T h a t s 336 \color{#3D99F6} {It\quad is\quad easy\quad to\quad check\quad that\quad we\quad are \quad talking\quad about\quad the\quad 6k\quad on\quad P\quad less\quad or\quad equal\quad\quad to\quad 2018: 0,6,12,...,2016. \quad That's\quad 336}

Therefore number of dissimilar terms are: n ( P ) + n ( Q ) + n ( R ) n ( P , Q ) n ( Q , R ) n ( R , P ) + n ( P , Q , R ) = 4035 n(P)+n(Q)+n(R)-n(P,Q)-n(Q,R)-n(R,P)+n(P,Q,R) \\=4035

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...