Find the number of terms with a non-zero coefficient in the expansion of:
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let P, Q and R be the terms of each of the expansions.
n ( P ) = 2 0 1 9 S i m p l e b i n o m i a l e x p a n s i o n
n ( Q ) = 2 0 1 8 S i m p l e b i n o m i a l e x p a n s i o n
n ( R ) = 2 0 1 7 S i m p l e b i n o m i a l e x p a n s i o n
n ( P , Q ) = 1 0 1 0 A l l t h e t e r m s i n Q l e s s o r e q u a l t o 2 0 1 8 a r e i n P . T h e n N ( P , Q ) = 1 0 1 0 b e c a u s e e x p o n e n t s i n Q a r e e v e n )
n ( Q , R ) = 6 7 3 A l l t h e t e r m s i n R o f t h e f o r m 6 k l e s s v o r e q u a l t o 4 0 3 4 a r e i n Q . T h e y a r e 0 , 6 , 1 2 , 1 8 , . . . , 4 0 3 2 .
n ( P , R ) = 6 7 3 A l l t h e t e r m s i n R t o 2 0 1 8 a r e i n P . T h e y a r e 0 , 3 , 6 , . . . 2 0 1 6 .
n ( P , Q , R ) = 3 3 7 I t i s e a s y t o c h e c k t h a t w e a r e t a l k i n g a b o u t t h e 6 k o n P l e s s o r e q u a l t o 2 0 1 8 : 0 , 6 , 1 2 , . . . , 2 0 1 6 . T h a t ′ s 3 3 6
Therefore number of dissimilar terms are: n ( P ) + n ( Q ) + n ( R ) − n ( P , Q ) − n ( Q , R ) − n ( R , P ) + n ( P , Q , R ) = 4 0 3 5