Let's have a try

Algebra Level 3

S n = n ! n ! ( 1 2 ! + 2 3 ! + 3 4 ! + + n ( n + 1 ) ! ) \large\ S_{n}=n!-n! \left(\frac{1}{2!}+\frac{2}{3!}+\frac 3{4!}+ \cdots +\frac{n}{(n+1)!}\right)

Given that S 2017 = 1 2 a S_{2017}=\dfrac{1}{2a} , where a a is an integer, find a a .


The answer is 1009.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Sep 23, 2018

S n = n ! n ! ( 1 2 ! + 2 3 ! + 3 4 ! + + n ( n + 1 ) ! ) = n ! n ! k = 1 n k ( k + 1 ) ! = n ! n ! k = 1 n k + 1 1 ( k + 1 ) ! = n ! n ! k = 1 n ( 1 k ! 1 ( k + 1 ) ! ) = n ! n ! ( 1 1 1 ( n + 1 ) ! ) = n ! n ! + 1 n + 1 = 1 n + 1 \begin{aligned} S_n & = n! - n!\left(\frac 1{2!} + \frac 2{3!} + \frac 3{4!} + \cdots + \frac n{(n+1)!} \right) \\ & = n! - n!\sum_{k=1}^n \frac k{(k+1)!} \\ & = n! - n!\sum_{k=1}^n \frac {k+1-1}{(k+1)!} \\ & = n! - n!\sum_{k=1}^n \left(\frac 1{k!} - \frac 1{(k+1)!}\right) \\ & = n! - n! \left(\frac 11 - \frac 1{(n+1)!}\right) \\ & = n! - n! + \frac 1{n+1} \\ & = \frac 1{n+1} \end{aligned}

Therefore, S 2017 = 1 2018 S_{2017} = \dfrac 1{2018} , a = 1009 \implies a = \boxed{1009} .

Haosen Chen
Feb 8, 2018

Note that k ( k + 1 ) ! = ( k + 1 ) 1 ( k + 1 ) ! = 1 k ! 1 ( k + 1 ) ! \displaystyle\frac{k}{(k+1)!}=\frac{(k+1)-1}{(k+1)!}=\frac{1}{k!}-\frac{1}{(k+1)!} ,so k = 1 n k ( k + 1 ) ! = 1 1 ( n + 1 ) ! S n = 1 n + 1 S 2017 = 1 2018 \displaystyle\sum_{k=1}^{n}\frac{k}{(k+1)!}=1-\frac{1}{(n+1)!}\Longrightarrow\ S_n =\frac{1}{n+1}\Longrightarrow\ S_{2017} =\frac{1}{2018} ,so answer is 1009 \boxed{1009}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...