Let's insert 1729 again and again

Calculus Level 5

Given : 0 2 × 1729 π max { sin x , sin 1 ( sin x ) } d x = a \int_{0}^{2 \times 1729\pi} \max\{\sin x, \sin^{-1}(\sin x)\} \ dx=a

Find the value of a \lceil a \rceil

Try more Integral problems here

Note : . . \lceil .. \rceil denotes the Ceiling Function( lowest integer greater than equal to).


The answer is 809.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ayush Verma
Nov 20, 2014

B o t h f u n c t i o n h a v e p e r i o d 2 π , s o a = 1729 0 2 π m a x ( { sin x , sin 1 ( sin x ) } ) d x = 1729 × I m a x ( { sin x , sin 1 ( sin x ) } ) = sin 1 ( sin x ) , x ( 0 , π ) m a x ( { sin x , sin 1 ( sin x ) } ) = sin x , x ( π , 2 π ) I = 0 π sin 1 ( sin x ) d x + π 2 π s i n x d x = I 1 + I 2 I 2 = 2 I 1 = A r e a o f f o r m e d b y y = 0 , y = x & y = π x = 1 2 × π × π 2 = π 2 4 a = 1729 × I = 1729 ( π 2 4 2 ) = 808.13 a = 809 Both\quad function\quad have\quad period\quad 2\pi ,so\\ \\ a=1729\int _{ 0 }^{ 2\pi }{ max\left( \left\{ \sin { x,\sin ^{ -1 }{ \left( \sin { x } \right) } } \right\} \right) dx } =1729\times I\\ \\ \\ max\left( \left\{ \sin { x,\sin ^{ -1 }{ \left( \sin { x } \right) } } \right\} \right) =\sin ^{ -1 }{ \left( \sin { x } \right) } ,\quad x\in \left( 0,\pi \right) \\ \\ max\left( \left\{ \sin { x,\sin ^{ -1 }{ \left( \sin { x } \right) } } \right\} \right) =\sin { x } ,\quad x\in \left( \pi ,2\pi \right) \\ \\ I=\int _{ 0 }^{ \pi }{ \sin ^{ -1 }{ \left( \sin { x } \right) } dx } +\int _{ \pi }^{ 2\pi }{ sinxdx } ={ I }_{ 1 }+{ I }_{ 2 }\\ \\ { I }_{ 2 }=-2\\ \\ { I }_{ 1 }=Area\quad of\quad \triangle \quad formed\quad by\quad y=0,y=x\quad \& \quad y=\pi -x\\ \\ \quad =\cfrac { 1 }{ 2 } \times \pi \times \cfrac { \pi }{ 2 } =\cfrac { { \pi }^{ 2 } }{ 4 } \\ \\ \therefore a=1729\times I=1729\left( \cfrac { { \pi }^{ 2 } }{ 4 } -2 \right) =808.13\\ \\ \left\lceil a \right\rceil =809\\

Easy but really interesting question.

Jake Lai - 6 years, 6 months ago

I am getting 803.4 by same method

aryaman jha - 5 years, 11 months ago

Log in to reply

may be calculation mistake.

use arcsin(sinx)=x for 2x=[0 , pi}

& arcsin(sinx)=pi-x for 2x=[pi , 2pi}

Ayush Verma - 5 years, 11 months ago

I mean, we used the exact same method. Even the steps! High Five!

Kishore S. Shenoy - 4 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...