Let's integrate 2

Calculus Level 2

x 3 1 + x 4 3 d x \displaystyle \int \dfrac{x^3}{\sqrt[3]{1+x^4}} dx

If the value of above expression is in the form A B ( 1 + x 4 ) Y X + C \frac{A}{B}\sqrt[X]{(1+x^4)^{Y}}+C , where A , B , X , Y A,B,X,Y are positive integers with gcd ( A , B ) = gcd ( X , Y ) = 1 \gcd(A,B) = \gcd(X,Y) = 1 , find A + B + X + Y A+B+X+Y .


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Harsh Khatri
Feb 14, 2016

Substituting x 4 + 1 = t x^4+1 = t ,

1 4 t 1 3 d t \displaystyle \frac{1}{4} \int t^{\frac{-1}{3}} dt

3 8 t 2 3 + C \displaystyle \Rightarrow \frac{3}{8} t^{\frac{2}{3} } +C

A + B + X + Y = 3 + 8 + 3 + 2 = 16 \displaystyle \Rightarrow A+B+X+Y = 3 + 8 + 3 + 2 = \boxed{16}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...