Let's integrate

Calculus Level 5

0 6 e x d x = ln A B C ! \int _{ 0 }^{ \infty }{ \left\lfloor \frac { 6 }{ { e }^{ x } } \right\rfloor \, dx } =\ln { \frac { { A }^{ B } }{ C! } }

The above equation is true for positive integers A A , B B and C C .

Find the minimum value of A + B + C A+B+C .

Bonus: Find the generalization of 0 n e x d x \displaystyle \int _0^\infty \left \lfloor \frac n{e^x} \right \rfloor \, dx .

Notation : ! ! denotes the factorial notation. For example, 8 ! = 1 × 2 × 3 × × 8 8! = 1\times2\times3\times\cdots\times8 .


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

I = 0 6 e x d x We note that 6 6 k = k ln 6 k < x 6 k 1 6 e x = k = 0 ln 6 5 5 d x + ln 6 5 ln 6 4 4 d x + ln 6 4 ln 6 3 3 d x + ln 6 3 ln 6 2 2 d x + ln 6 2 ln 6 1 d x = k = 1 5 ln 6 k + 1 ln 6 k k d x = k = 1 5 k ( ln 6 k ln 6 k + 1 ) = k = 1 5 k ( ln ( k + 1 ) ln k ) = k = 2 6 ( k 1 ) ln k k = 1 5 ln k = k = 2 6 k ln k k = 1 5 ln k k = 2 6 ln k = 6 ln 6 ln ( 6 ! ) = ln 6 5 5 ! \begin{aligned} I & = \int _0^\infty \left \lfloor \frac 6{\color{#3D99F6}{e^x}} \right \rfloor dx \quad \quad \small \color{#3D99F6}{\text{We note that } \frac 6{\frac6k} = k \implies \ln \frac6k < x \le \frac 6{k-1} \implies \left \lfloor \frac 6{\color{#3D99F6}{e^x}} \right \rfloor = k} \\ & = \int _0^{\ln \frac65} 5 \ dx + \int _{\ln \frac65}^{\ln \frac64} 4 \ dx + \int _{\ln \frac64}^{\ln \frac63} 3 \ dx + \int _{\ln \frac63}^{\ln \frac62} 2 \ dx + \int _{\ln \frac62}^{\ln 6} 1 \ dx \\ & = \sum_{k=1}^5 \int_{\ln \frac6{k+1}}^{\ln \frac6k} k \ dx \\ & = \sum_{k=1}^5 k\left(\ln \frac6k - \ln \frac6{k+1} \right) \\ & = \sum_{k=1}^5 k\left(\ln (k+1) - \ln k \right) \\ & = \sum_{k= \red 2}^{\red 6} (k-1) \ln k - \sum_{k=1}^5 \ln k \\ & = \sum_{k= \red 2}^{\red 6} k \ln k - \sum_{k=1}^5 \ln k - \sum_{k=\red 2}^{\red 6} \ln k \\ & = 6 \ln 6 - \ln (6!) \\ & = \ln \frac {6^5}{5!} \end{aligned}

A + B + C = 6 + 5 + 5 = 16 \implies A+B+C = 6+5+5 = \boxed{16}


Generalization: 0 n e x d x = ln n n 1 ( n 1 ) ! \displaystyle \int _0^\infty \left \lfloor \frac n{e^x} \right \rfloor dx = \ln \frac{n^{n-1}}{(n-1)!}

I think the question needs to be modified a bit, since ln(6^5/5!)=ln(6^6/6!).So even 6+6+6=18 is possible.Similarly the generalization can be written as ln(n^n/n!).Please correct me if i am wrong.

Shivam Saxena - 5 years ago

Log in to reply

Thanks. I've made the necessary edits. Those who previously answered 18 will be marked correct.

In future, if you spot any errors with a problem, you can “report” it by selecting "report problem" in the “line line line” menu in the top right corner. This will notify the problem creator who can fix the issues.

Brilliant Mathematics Staff - 5 years ago

@Rishi Sharma , I have edited the problem. Hope that it is okay for you.

Chew-Seong Cheong - 5 years ago

Log in to reply

Thanks sir for providing a solution.

Rishi Sharma - 5 years ago

This was a nice little floor function intergral…..solution's the same as mine, Chew-Seong!

tom engelsman - 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...