Let's Integrate It 2!

Calculus Level 4

0 x 2 1 + x 4 d x = ? \large \int_0^{\infty} \frac{x^{2}}{1+x^{4}} \, dx= \ ?

Give your answer to 3 decimal places.


The answer is 1.110.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Kazem Sepehrinia
Aug 3, 2015

Let x = 1 x x=\frac{1}{x} I = 0 1 x 2 1 + 1 x 4 ( 1 x 2 ) d x = 0 1 1 + x 4 d x \text{I}=\int_{\infty}^{0} \frac{\frac{1}{x^2}}{1+\frac{1}{x^4}} \left(-\frac{1}{x^2}\right) \text{d}x=\int_{0}^{\infty} \frac{1}{1+x^4} \text{d}x Add this to original integral 2 I = 0 1 + x 2 1 + x 4 d x 2\text{I}=\int_{0}^{\infty} \frac{1+x^2}{1+x^4} \text{d}x Let x = x 1 x x=x-\frac{1}{x} 2 I = 1 2 + x 2 d x = 2 2 ( arctan ( x 2 ) ) = 2 2 π I = π 2 2 2\text{I}=\int_{-\infty}^{\infty} \frac{1}{2+x^2} \text{d}x=\frac{\sqrt{2}}{2} \left( \arctan \left(\frac{x}{\sqrt{2}}\right)\right)_{-\infty}^{\infty}=\frac{\sqrt{2}}{2} \pi \ \ \ \ \Longrightarrow \ \ \ \ \text{I}=\frac{\pi}{2 \sqrt{2}}

How did you come up with the intuition to such solution? This is incredible!

Kamal Hisyam - 5 years, 10 months ago

Log in to reply

There is always a simpler way!

Kazem Sepehrinia - 5 years, 9 months ago
Maggie Miller
Aug 3, 2015

Let C C be a large semicircle above the real axis in the complex plane. Let ζ = e π i / 4 \zeta=e^{\pi i/4} . Since z 2 1 + z 4 = z 2 ( z ζ ) ( z ζ 3 ) ( z ζ 5 ) ( z ζ 7 ) \displaystyle\frac{z^2}{1+z^4}=\frac{z^2}{(z-\zeta)(z-\zeta^3)(z-\zeta^5)(z-\zeta^7)} is analytic within C C with poles at ζ , ζ 3 \zeta, \zeta^3 , by Cauchy's integration formula

C z 2 1 + z 4 d z = 2 π i ( ζ 2 ( ζ ζ 3 ) ( ζ ζ 5 ) ( ζ ζ 7 ) + ζ 6 ( ζ 3 ζ ) ( ζ 3 ζ 5 ) ( ζ 3 ζ 7 ) ) \displaystyle \int_C\frac{z^2}{1+z^4}dz=2\pi i\left(\frac{\zeta^2}{(\zeta-\zeta^3)(\zeta-\zeta^5)(\zeta-\zeta^7)}+\frac{\zeta^6}{(\zeta^3-\zeta)(\zeta^3-\zeta^5)(\zeta^3-\zeta^7)}\right)

= 2 π i ( i 2 2 ζ 2 i + i 2 2 i 2 ζ 3 ) = π i 2 ( e 7 π i / 4 + e 5 π i 4 ) = π 2 \displaystyle=2\pi i\left(\frac{i}{\sqrt{2}2\zeta\sqrt{2}i}+\frac{-i}{-\sqrt{2}\sqrt{2}i2\zeta^3}\right)=\frac{\pi i}{2}(e^{7\pi i/4}+e^{5\pi i}{4})=\frac{\pi}{\sqrt{2}} .

Since z 2 1 + z 4 z 0 \frac{z^2}{1+z^4}|z|\to 0 as z |z| grows large, as the radius of C C grows large the arc does not contribute to the integral. In the limit, we find

x 2 1 + x 4 d x = π 2 \displaystyle\int_{-\infty}^{\infty}\frac{x^2}{1+x^4}dx=\frac{\pi}{\sqrt{2}} .

Therefore,

0 x 2 1 + x 4 d x = 1 2 x 2 1 + x 4 d x = π 2 2 1.110 \displaystyle\int_{0}^{\infty}\frac{x^2}{1+x^4}dx=\frac{1}{2}\int_{-\infty}^{\infty}\frac{x^2}{1+x^4}dx=\frac{\pi}{2\sqrt{2}}\approx\boxed{1.110} .

Whoa that's ridiculously terrific, do you approach all such calculus problems like that...

Arnav Das - 5 years, 4 months ago

First of all, let's split the integral into two parts:

I = 0 x 2 1 + x 4 d x = 0 1 x 2 1 + x 4 d x + 1 x 2 1 + x 4 d x I = \int_{0}^{\infty} \frac{x^{2}}{1+x^{4}} \mathrm{d}x = \int_{0}^{1} \frac{x^{2}}{1+x^{4}} \mathrm{d}x + \int_{1}^{\infty} \frac{x^{2}}{1+x^{4}} \mathrm{d}x

Let's call the first integral I 1 I_{1} and the second I 2 I_{2} . Then

I 1 = 0 1 x 2 n = 0 ( 1 ) n x 4 n d x = n = 0 ( 1 ) n 0 1 x 4 n + 2 d x I_{1} = \int_{0}^{1} x^{2} \sum_{n=0}^{\infty} (-1)^{n} x^{4n}\mathrm{d}x = \sum_{n=0}^{\infty} (-1)^{n} \int_{0}^{1}x^{4n+2} \mathrm{d}x

And

I 2 = 1 1 x 2 n = 0 ( 1 ) n 1 x 4 n d x = n = 0 ( 1 ) n 1 x ( 4 n + 2 ) d x I_{2} = \int_{1}^{\infty} \frac{1}{x^{2}} \sum_{n=0}^{\infty} (-1)^{n} \frac{1}{x^{4n}} \mathrm{d}x = \sum_{n=0}^{\infty} (-1)^{n} \int_{1}^{\infty} x^{-(4n+2)} \mathrm{d}x

These integrals are easy to solve, and

I 1 = n = 0 ( 1 ) n 4 n + 3 ; I 2 = n = 0 ( 1 ) n 4 n + 1 I_{1} = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{4n+3} \qquad;\qquad I_{2} = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{4n+1}

The result, is, therefore

I = I 1 + I 2 = n = 0 ( 1 ) n { 1 4 n + 3 + 1 4 n + 1 } = π 2 2 I = I_{1} + I_{2} = \sum_{n=0}^{\infty} (-1)^{n} \left \{ \frac{1}{4n+3} + \frac{1}{4n+1} \right \} = \frac{\pi}{2\sqrt{2}}

let I = $x^2 / (x^4 + 1) d x

= [x^2 / (x^2 + i) (x^2-i) ] dx

= ½($ (1 / (x^2 + i))*dx + $ [1/(x^2 – i)]dx

= ½ (I1 + I2)

I2 = $1/(x^2 - i)

= ½ ,1/i/ $[/(x-i)]dx – [1/(x+i)] dx

=1/(2*i) *ln[(x-i)/(x+i)]

As x->inf above sum is zero (dividing both numerator and denominator by x and we get ln(1) which is 0

As x-> 0, above sum is 1/(2 i) ln(-1).

I1 = ½ 1/(i sqrt(i) ln(x-i sqrt(i) / (x+i*sqrt(i))

By a similar argument, I1 = ½ * 1/(i sqrt(i)) ln(-1))

Now we use the celebrated Eulers formula , e^(-i pi) = -1. Hence ln(-1) = -i pi I = ½ [pi /2 + (pi/2 / (sqrt(i)] Pi /2/ (sqrt(i) = pi (1-i) sqrt(2)/(2*2)] (Here, we use the fact that sqrt(i) = (1+/- i)/sqrt(2) and here, we c)hoose (1+i)/(sqrt(2) because it lies in the first quadrant and smplify and choose the real part

Real part is pi*sqrt(2)/4

I = ½ [pi / 2 + pi/2*sqrt(2)]

= ½ [pi sqrt(2) + pi]/(2 sqrt(2))

= ½ [pi(1+sqrt(2))/2*sqrt(2)]

But the answer seems to be off by a factor of 1/2 (1 + sqrt(2)).

Yes, residue calculus could have been used (vertices of a square or rhombus) but there seems to be no way of avoiding the sqrt(i) factor

The above also seems to be linked to fourth roots of unity

Sundar R - 5 years, 10 months ago
Rohan Shinde
Dec 28, 2018

Substitute x = t 1 4 x=t^{\frac 14} we get I = 1 4 0 t 1 4 1 + t d t = 1 4 B ( 1 4 , 3 4 ) = π 2 2 I=\frac 14 \int_0^{\infty}\frac {t^{\frac {-1}{4}}}{1+t} dt=\frac 14 B\left(\frac 14,\frac 34\right)=\frac {\pi}{2\sqrt 2}

Righved K
Nov 12, 2015

Can't we add (1+1\x^(2))+(1-1\x^(2)) in numerator after multiplying and dividing the whole expression by x^(2)...that was easier fr me!

J Krol
Oct 1, 2015

A long winded, but fairly pedestrian, method.

Letting x = u 2 x = \frac{u}{\sqrt{2}} , the integrand transforms to

u 2 2 u 4 + 4 \frac{u^{2}\sqrt{2}}{u^{4} + 4}

Noting that

u 4 + 4 = u 4 + 4 u 2 + 4 4 u 2 = ( u + 2 ) 2 ( 2 u ) 2 = ( u 2 + 2 u + 2 ) ( u 2 2 u + 2 ) u^{4} + 4 = u^4 + 4u^2 + 4 - 4u^2 = (u+2)^{2} - (2u)^{2} = (u^2+2u+2)(u^2-2u+2)

we can express the integrand, using partial fractions, as \(

\frac{\sqrt{2}}{4} * ( \frac{u}{u^2-2u+2) - \frac{u}{u^2+2u+2}) \)

Using standard integration techniques, this integrates to

2 4 ( 0.5 l n 1 + π ) \frac{\sqrt{2}}{4} * (0.5ln1 + \pi)

and the answer follows.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...