Let's Integrate!

Calculus Level 2

d x x ( x n + 1 ) \int \frac{\text{d}x}{ x( x^{n}+1) } is equal to:

1 n log ( x n + 1 x n ) + C \frac{1}{n} \log ( \frac{x^{n}+1}{x^{n}} ) + C log ( x n + 1 x n ) + C \log ( \frac{x^{n}+1}{x^{n}} ) + C 1 n log ( x n ) + C \frac{1}{n} \log(x^{n}) + C 1 n log ( x n x n + 1 ) + C \frac{1}{n} \log ( \frac{x^{n}}{x^{n}+1} ) + C

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Jin Young Hwang
Apr 26, 2014

1 x ( x n + 1 ) = x n 1 1 + x n \dfrac{1}{x(x^n+1)}=\dfrac{x^{-n-1}}{1+x^{-n}} , and let f ( x ) = 1 + x n f(x)=1+x^{-n} , then x n 1 1 + x n = f ( x ) n f ( x ) \dfrac{x^{-n-1}}{1+x^{-n}}=-\dfrac{f'(x)}{nf(x)} because f ( x ) = n x n 1 f'(x)=-nx^{-n-1} . Since

  • f ( x ) f ( x ) d x = ln f ( x ) + C \displaystyle\int \dfrac{f'(x)}{f(x)}dx=\ln|f(x)|+C ,

We get the answer.

This is the best way to solve it.

Arghyanil Dey - 7 years, 1 month ago
Indronil Ghosh
Apr 17, 2014

Using partial fraction decomposition,

1 x ( x n + 1 ) = A x + B x n 1 x n + 1 \displaystyle \frac{1}{x(x^n+1)} = \frac{A}{x}+\frac{Bx^{n-1}}{x^n+1}

1 = A ( x n + 1 ) + B x ( x n 1 ) = A x n + B x n + A \displaystyle 1=A(x^n+1)+Bx(x^{n-1})=Ax^n+Bx^n+A

A A must be equal to 1 1 and A x n + B x n Ax^n+Bx^n must be equal to 0 0 , so

x n + B x n = 0 B = 1 x^n + Bx^n =0\,\,\,\Rightarrow\,\,\,B=-1

Then our new integral is

( 1 x x n 1 x n + 1 ) d x \displaystyle\int \left(\frac{1}{x}-\frac{x^{n-1}}{x^n+1}\right)\,\mathrm{d}x

u u -substituting for the second term,

u = x n + 1 1 n d u = x n 1 d x \displaystyle u=x^n+1\,\,\,\Rightarrow\,\,\, \frac{1}{n}\mathrm{d}u=x^{n-1}\,\mathrm{d}x

1 x d x 1 n 1 u d u \displaystyle \Rightarrow\,\int \frac{1}{x}\mathrm{d}x -\frac{1}{n}\int\frac{1}{u}\mathrm{d}u

= ln x 1 n ln ( x n + 1 ) + C = 1 n ln x n 1 n ln ( x n + 1 ) + C \displaystyle = \ln x - \frac{1}{n}\ln(x^n+1) +C = \frac{1}{n}\ln x^n - \frac{1}{n}\ln(x^n+1) +C

= 1 n ln ( x n x n + 1 ) + C \displaystyle = \displaystyle \boxed{\displaystyle \frac{1}{n}\ln \left( \frac{x^n}{x^n+1} \right) +C}

lengthy one!!

Arijit Banerjee - 7 years, 1 month ago
Arijit Banerjee
Apr 25, 2014

write x^n + 1 - x^n on the numerator ... then separate and integrate...

Mayank Holmes
Apr 23, 2014

put k = x*(n)......... then go by partial fraction method

lengthy method.... write x^n + 1 - x^n on the numerator ... then separate and integrate...

Arijit Banerjee - 7 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...