A calculus problem by Prajwal Krishna

Calculus Level 3

lim x 0 ( 1 1 / sin 2 x + 2 1 / sin 2 x + 3 1 / sin 2 x + + n 1 / sin 2 x ) sin 2 x = ? \large \lim_{x\to0} \left( 1^{1/\sin^2 x} + 2^{1/\sin^2 x} + 3^{1/\sin^2 x} + \cdots + n^{1/\sin^2 x} \right)^{\sin^2 x } =\, ?

1 1 n n Not defined 1 n \frac1n n \sqrt { n } 0 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Prakhar Bindal
Nov 16, 2016

Take n^(1/sin^2(x)) common

As x is approaching zero so power is tending towards infinity.

All numbers except 1 left inside after taking common are less than 1 hence they will tend to zero

Hence the limit is n

Chew-Seong Cheong
Nov 16, 2016

L = lim x 0 ( 1 1 / sin 2 x + 2 1 / sin 2 x + 3 1 / sin 2 x + . . . + n 1 / sin 2 x ) sin 2 x Let u = 1 sin 2 x = lim u ( 1 + 2 u + 3 u + . . . + n u ) 1 u = lim u exp ( ln ( 1 + 2 u + 3 u + . . . + n u ) 1 u ) = exp ( lim u ln ( 1 + 2 u + 3 u + . . . + n u ) u ) = exp ( lim u ln ( n u ( 1 + 2 u + 3 u + . . . + ( n 1 ) u n u + 1 ) ) u ) = exp ( lim u ln n u + ln ( 1 + 2 u + 3 u + . . . + ( n 1 ) u n u + 1 ) u ) = e ln n = n \begin{aligned} L & = \lim_{x \to 0} \left(1^{1/\sin^2 x} + 2^{1/\sin^2 x} + 3^{1/\sin^2 x} +...+n^{1/\sin^2 x} \right)^{\sin^2 x} & \small {\color{#3D99F6}\text{Let }u=\frac 1{\sin^2 x}} \\ & = \lim_{u \to \infty} \left(1+2^u+3^u+...+n^u \right)^{\frac 1u} \\ & = \lim_{u \to \infty} \exp \left(\ln \left(1+2^u+3^u+...+n^u \right)^{\frac 1u} \right) \\ & = \exp \left(\lim_{u \to \infty} \frac {\ln \left(1+2^u+3^u+...+n^u \right)}u \right) \\ & = \exp \left(\lim_{u \to \infty} \frac {\ln \left(n^u \left(\frac {1+2^u+3^u+...+(n-1)^u}{n^u}+1\right) \right)}u \right) \\ & = \exp \left(\lim_{u \to \infty} \frac {\ln n^u + \ln \left(\frac {1+2^u+3^u+...+(n-1)^u}{n^u}+1\right)}u \right) \\ & = e^{\ln n} = \boxed{n} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...