Let's make a triangle with the solution

Algebra Level 5

Let T 1 T_1 be a triangle with angles 5 7 , 6 0 , 6 3 57^{\circ}, 60^{\circ}, 63^{\circ} and sides a , b , c a, b,c . Let x , y , z x,y,z be positive numbers such that: x ( y + z x ) = a 2 , y ( z + x y ) = b 2 , z ( x + y z ) = c 2 . \begin{aligned} x(y+z-x)=a^2, \\ y(z+x-y)=b^2, \\ z(x+y-z)=c^2. \end{aligned} It is known that x , y , z x,y,z represent the sides of a triangle T 2 T_2 . Find the measure (in degrees) of the greatest angle of T 2 T_2 .


The answer is 66.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Aug 27, 2013

Suppose that the angles of T 1 T_1 are A , B , C A,B,C . Note that 2 a b cos C = a 2 + b 2 c 2 = 2 x y x 2 y 2 + z 2 = z 2 ( x y ) 2 a 2 b 2 = x y ( z 2 ( x y ) 2 ) = 2 a b x y cos C a b = 2 x y cos C a b sin C = x y sin 2 C \begin{array}{rcl} 2ab\cos C & = & a^2 + b^2 - c^2 \; = \; 2xy - x^2 - y^2 + z^2 \\ & = & z^2 - (x - y)^2 \\ a^2b^2 & = & xy\big(z^2 - (x-y)^2\big) \; = \; 2abxy\cos C \\ ab & = & 2xy\cos C \\ ab\sin C & = & xy\sin2C \end{array} Similarly, a c sin B = x z sin 2 B ac\sin B = xz\sin 2B and b c sin A = y z sin 2 A bc\sin A = yz\sin2A . If Δ 1 \Delta_1 is the area of T 1 T_1 , then y z sin 2 A = x z sin 2 B = x y sin 2 C = 2 Δ 1 yz\sin2A \; = \; xz\sin2B \; = \; xy\sin2C \; = \; 2\Delta_1 and hence sin 2 A x = sin 2 B y = sin 2 C z \frac{\sin2A}{x} \; = \; \frac{\sin2B}{y} \; = \; \frac{\sin2C}{z} Since x , y , z x,y,z are the sides of a triangle T 2 T_2 and A , B , C A,B,C are all acute, the Sine Rule now tells us that the angles of T 2 T_2 are 18 0 2 A 180^\circ-2A , 18 0 2 B 180^\circ-2B , 18 0 2 C 180^\circ-2C . Note that the area Δ 2 \Delta_2 of T 2 T_2 is equal to the area Δ 1 \Delta_1 of T 1 T_1 .

In our case, the largest angle in T 2 T_2 is ( 180 2 × 57 ) = 6 6 (180-2\times57)^\circ = 66^\circ .

If we did not want just to say that the angles of T 2 T_2 must be these because they fit the pattern of the Sine Rule, we could push things through fully. We know that x = R sin 2 A y = R sin 2 B z = R sin 2 C x \; = \; R\sin2A \qquad y \; = \; R\sin2B \qquad z \; = \; R\sin2C for some R > 0 R>0 . Now sin 2 x + sin 2 y sin 2 ( x + y ) = sin 2 x + sin 2 y ( sin x cos y + cos x sin y ) 2 = sin 2 x ( 1 cos 2 y ) 2 sin x cos x sin y cos y + ( 1 cos 2 x ) sin 2 y = 2 sin 2 x sin 2 y 2 sin x cos x sin y cos y = 2 sin x sin y ( sin x sin y cos x cos y ) = 2 sin x sin y cos ( x + y ) \begin{array}{rcl} \sin^2x &+& \sin^2y \;-\; \sin^2(x+y)\\ & = & \sin^2x + \sin^2y - (\sin x \cos y + \cos x \sin y)^2 \\ & = & \sin^2x(1-\cos^2y) - 2\sin x \cos x \sin y \cos y\\ & & {} + (1 - \cos^2x)\sin^2y \\ & = & 2\sin^2x\sin^2y - 2\sin x \cos x \sin y \cos y \\ & = & 2\sin x \sin y(\sin x \sin y - \cos x \cos y) \\ & = & -2\sin x \sin y\cos(x+y) \end{array} and hence sin 2 2 B + sin 2 2 C sin 2 2 A = 2 sin 2 B sin 2 C cos ( 2 B + 2 C ) = 2 sin 2 B sin 2 C cos ( 36 0 2 A ) = 2 sin 2 B sin 2 C cos 2 A \begin{array}{rcl} \sin^22B + \sin^22C - \sin^22A & = & -2\sin2B\sin2C\cos(2B+2C) \\ & = & -2\sin2B\sin2C\cos(360^\circ-2A) \\ & = & -2\sin2B\sin2C\cos2A \end{array} Thus, if X , Y , Z X,Y,Z are the angles of T 2 T_2 , then cos X = y 2 + z 2 x 2 2 y z = R 2 ( sin 2 2 B + sin 2 2 C sin 2 2 A ) 2 R 2 sin 2 B sin 2 C = cos 2 A = cos ( 18 0 2 A ) \begin{array}{rcl}\cos X & = & \frac{y^2+z^2-x^2}{2yz} \; = \; \frac{R^2(\sin^22B + \sin^22C - \sin^22A)}{2R^2\sin 2B\sin 2C} \\ & = & -\cos2A \; = \;\cos(180^\circ-2A) \end{array} so that X = 18 0 2 A X = 180^\circ - 2A and, similarly, Y = 18 0 2 B Y=180^\circ-2B and Z = 18 0 2 C Z = 180^\circ-2C .

Moderator note:

Great job! You really got to the bottom of this one!

We can even do this at least semi-geometrically (and at the same time prove the existence of triangle T 2 T_2 , rather than just accept its existence).

Let angles A , B , C A,B,C all be acute. Let A , B , C A',B',C' be the feet of the perpendiculars from A , B , C A,B,C to B C , A C , A B BC,AC,AB respectively. Since A , B , C A,B,C are all acute, A A' lies within B C BC , B B' lies within A C AC and C C' lies within A B AB . It is fairly standard that all four triangles A B C ABC , A B C AB'C' , A B C A'BC' and A B C A'B'C are similar. Thus the triangle A B C A'B'C' has angles A = 18 0 2 A B = 18 0 2 B C = 18 0 2 C A' = 180^\circ-2A \qquad B' = 180^\circ - 2B \qquad C' = 180^\circ - 2C and sides a = a cos A b = b cos B c = c cos C a' = a\cos A \qquad b' = b\cos B \qquad c' = c\cos C Then b + c a = b cos B + c cos C a cos A = b ( a 2 + c 2 b 2 ) 2 a c + c ( a 2 + b 2 c 2 ) 2 a b a ( b 2 + c 2 a 2 ) 2 b c = b 2 ( a 2 + c 2 b 2 ) + c 2 ( a 2 + b 2 c 2 ) a 2 ( b 2 + c 2 a 2 ) 2 a b c = ( a 2 + b 2 c 2 ) ( a 2 + c 2 b 2 ) 2 a b c = 2 a cos B cos C a ( b + c a ) = 2 a 2 cos A cos B cos C \begin{array}{rcl} b'+c'-a' & = & b\cos B + c\cos C - a\cos A \\ & = & \frac{b(a^2+c^2-b^2)}{2ac} + \frac{c(a^2+b^2-c^2)}{2ab} - \frac{a(b^2+c^2-a^2)}{2bc} \\ & = & \frac{b^2(a^2+c^2-b^2) + c^2(a^2+b^2-c^2) - a^2(b^2+c^2-a^2)}{2abc} \\ & = & \frac{(a^2+b^2-c^2)(a^2+c^2-b^2)}{2abc} \\ & = & 2a\cos B \cos C \\ a'(b'+c'-a') & = & 2a^2\cos A \cos B \cos C \end{array} and, similarly, b ( c + a b ) = 2 b 2 cos A cos B cos C b'(c'+a'-b') = 2b^2\cos A \cos B \cos C and c ( a + b c ) = 2 c 2 cos A cos B cos C c'(a'+b'-c') = 2c^2\cos A \cos B \cos C .

Thus, since A , B , C A,B,C are all acute, we can scale the triangle A B C A'B'C' , forming a triangle T 2 T_2 with sides x = a 2 cos A cos B cos C , y = b 2 cos A cos B cos C , z = c 2 cos A cos B cos C x = \frac{a'}{\sqrt{2\cos A \cos B \cos C}} \;,\;y = \frac{b'}{\sqrt{2 \cos A \cos B \cos C}} \;,\; z = \frac{c'}{\sqrt{2\cos A \cos B \cos C}} and we obtain the correct identities for x , y , z x,y,z , while retaining the angles 18 0 2 A , 18 0 2 B , 18 0 2 C 180^\circ-2A,180^\circ-2B,180^\circ-2C .

Hmmh. Is there a geometric construction which obtains T 2 T_2 directly, instead of this geometric construction of the orthic triangle A B C A'B'C' and then rescaling?

Mark Hennings - 7 years, 9 months ago

Log in to reply

The triangle T 2 T_2 can be constructed, since 1 2 cos A cos B cos C = R r \frac{1}{2\cos A \cos B \cos C} \; = \; \frac{R}{r'} where R R is the outradius of the original triangle T 1 T_1 , and r r' is the inradius of the orthic triangle A B C A'B'C' . Thus we need to construct T 2 T_2 , a triangle similar to the orthic triangle with inradius R r \sqrt{Rr'} . This can be done:

alt text alt text

Mark Hennings - 7 years, 9 months ago

Very thorough solution. Good job, Mark H.

Michael Tong - 7 years, 9 months ago

Oh my god! Magnifico! I say make that triangle your profile pic, Mark H. :)

A Brilliant Member - 7 years, 9 months ago
Alex Wice
Aug 27, 2013

In any triangle, by the Cosine Law we know:

cos C = a 2 + b 2 c 2 2 a b \cos C = \frac{a^2 + b^2 - c^2}{2ab}

Now square both sides and substitute all occurrences of a 2 a^2 , b 2 b^2 , and c 2 c^2 with the given equalities. After reducing, you get

cos 2 C = ( z 2 x 2 y 2 + 2 x y ) 4 x y \cos^2 C = \frac{(z^2 - x^2 - y^2 + 2xy)}{4xy} and so 1 2 cos 2 C = x 2 + y 2 z 2 2 x y = cos Z 1 - 2\cos^2 C = \frac{x^2 + y^2 - z^2}{2xy} = \cos Z

where the last equality follows from the cosine law on the triangle with sidelengths x , y , z x,y,z .

Finishing, we have cos Z = 1 2 cos 2 C \cos Z = 1 - 2\cos^2 C , and cos Z = cos 2 C = cos ( 180 2 C ) \cos Z = -\cos 2C = \cos(180-2C) from the double angle and the formula cos ( x ) = cos x \cos (-x) = -\cos x .

So indeed cos X , cos Y , cos Z = cos 5 4 , cos 6 0 , cos 6 6 \cos X, \cos Y, \cos Z = \cos 54^\circ, \cos 60^\circ, \cos 66^\circ , in some order. The result follows. 66 \fbox{ 66 }

cos ( x ) = cos x \cos(-x)=-\cos x

I always thought it was:

cos ( x ) = cos x \cos (-x) = \cos x .

Did you want to write:

cos ( 18 0 x ) = cos x \cos (180^\circ -x)=-\cos x ?

Mursalin Habib - 7 years, 9 months ago

Log in to reply

I believe that was a typo. Note that the author told cos 2 C = cos ( π 2 C ) - \cos \ 2C= \cos \ (\pi -2C) ,which seems to be an application of the identity cos θ + cos ( π θ ) = 0 \cos \ \theta + \cos \ (\pi - \theta)= 0 .

Sreejato Bhattacharya - 7 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...