△ = ∣ ∣ ∣ ∣ ∣ ∣ x y z x 2 y 2 z 2 1 + x 3 1 + y 3 1 + z 3 ∣ ∣ ∣ ∣ ∣ ∣ = 0 where x = y = z .
Consider a determinant above.
Now find the value of x × y × z and let it be equal to A , where A is an integer.
Now consider a binomial ( 4 6 + 6 4 ) 5 0
Let the number of rational terms in the expansion of above binomial is B and the number of irrational terms be C .
Now if, it is given that 2 C − λ B − 1 = − A where λ is a constant. Then find the value of B + C + λ − 1 − A .
Hint: Use properties of determinant to solve the determinant.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Is it just me or is this sum way too overrated???
The value of λ comes out to be 11 not 12 :)It may be a typo. Anyways nice solution… +1
Log in to reply
Ohhh yeah. That was a mistake, I corrected it.
Problem Loading...
Note Loading...
Set Loading...
⇒ ∣ ∣ ∣ ∣ ∣ ∣ x y z x 2 y 2 z 2 1 + x 3 1 + y 3 1 + z 3 ∣ ∣ ∣ ∣ ∣ ∣ = 0 ⇒ ∣ ∣ ∣ ∣ ∣ ∣ x y z x 2 y 2 z 2 1 1 1 ∣ ∣ ∣ ∣ ∣ ∣ + ∣ ∣ ∣ ∣ ∣ ∣ x y z x 2 y 2 z 2 x 3 y 3 z 3 ∣ ∣ ∣ ∣ ∣ ∣ = 0 ⇒ ∣ ∣ ∣ ∣ ∣ ∣ x y z x 2 y 2 z 2 1 1 1 ∣ ∣ ∣ ∣ ∣ ∣ + ( x y z ) ∣ ∣ ∣ ∣ ∣ ∣ x y z x 2 y 2 z 2 1 1 1 ∣ ∣ ∣ ∣ ∣ ∣ = 0 ⇒ ∣ ∣ ∣ ∣ ∣ ∣ x y z x 2 y 2 z 2 1 1 1 ∣ ∣ ∣ ∣ ∣ ∣ + ( x y z ) ∣ ∣ ∣ ∣ ∣ ∣ x y z x 2 y 2 z 2 1 1 1 ∣ ∣ ∣ ∣ ∣ ∣ = 0 ⇒ ( ∣ ∣ ∣ ∣ ∣ ∣ x y z x 2 y 2 z 2 1 1 1 ∣ ∣ ∣ ∣ ∣ ∣ ) ( x y z + 1 ) = 0 ∴ x y z = − 1 = A ⇒ ( 4 6 + 6 4 ) 5 0 ⇒ T r + 1 = 5 0 C r ( 6 ) 4 5 0 − r ( 4 ) 6 r ∴ R a t i o n a l t e r m s a r e f o r r = 6 , 1 8 , 3 0 , 4 2 ⇒ B = 4 a n d C = 4 7 ⇒ S o l v i n g f u r t h e r e q u a t i o n w e g e t λ = 1 1 ⇒ B + C + λ − A − 1 = 6 2 .