Let's mix it up

Algebra Level 5

= x x 2 1 + x 3 y y 2 1 + y 3 z z 2 1 + z 3 = 0 \triangle =\begin{vmatrix} x & { x }^{ 2 } & 1+{ x }^{ 3 } \\ y & y^{ 2 } & { 1+y }^{ 3 } \\ z & z^{ 2 } & 1+z^{ 3 } \end{vmatrix}=0 where x y z x\neq y\neq z .

Consider a determinant above.

Now find the value of x × y × z x\times y\times z and let it be equal to A A , where A A is an integer.

Now consider a binomial ( 6 4 + 4 6 ) 50 ({ \sqrt [ 4 ]{ 6 } +\sqrt [ 6 ]{ 4 } ) }^{ 50 }

Let the number of rational terms in the expansion of above binomial is B B and the number of irrational terms be C C .

Now if, it is given that C λ B 1 2 = A \frac { C-\lambda B - 1}{ 2 } =-A where λ \lambda is a constant. Then find the value of B + C + λ 1 A B+C+\lambda - 1 - A .

Hint: Use properties of determinant to solve the determinant.


The answer is 62.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Yash Choudhary
Apr 2, 2015

x x 2 1 + x 3 y y 2 1 + y 3 z z 2 1 + z 3 = 0 x x 2 1 y y 2 1 z z 2 1 + x x 2 x 3 y y 2 y 3 z z 2 z 3 = 0 x x 2 1 y y 2 1 z z 2 1 + ( x y z ) x x 2 1 y y 2 1 z z 2 1 = 0 x x 2 1 y y 2 1 z z 2 1 + ( x y z ) x x 2 1 y y 2 1 z z 2 1 = 0 ( x x 2 1 y y 2 1 z z 2 1 ) ( x y z + 1 ) = 0 x y z = 1 = A ( 6 4 + 4 6 ) 50 T r + 1 = 50 C r ( 6 ) 50 r 4 ( 4 ) r 6 R a t i o n a l t e r m s a r e f o r r = 6 , 18 , 30 , 42 B = 4 a n d C = 47 S o l v i n g f u r t h e r e q u a t i o n w e g e t λ = 11 B + C + λ A 1 = 62 . \Rightarrow \quad \begin{vmatrix} x & { x }^{ 2 } & 1+{ x }^{ 3 } \\ y & { y }^{ 2 } & 1+{ y }^{ 3 } \\ z & { z }^{ 2 } & 1+{ z }^{ 3 } \end{vmatrix}=0\\ \Rightarrow \quad \begin{vmatrix} x & { x }^{ 2 } & 1 \\ y & { y }^{ 2 } & 1 \\ z & { z }^{ 2 } & 1 \end{vmatrix}+\begin{vmatrix} x & { x }^{ 2 } & { x }^{ 3 } \\ y & { y }^{ 2 } & { y }^{ 3 } \\ z & { z }^{ 2 } & { z }^{ 3 } \end{vmatrix}=0\\ \Rightarrow \quad \begin{vmatrix} x & { x }^{ 2 } & 1 \\ y & { y }^{ 2 } & 1 \\ z & { z }^{ 2 } & 1 \end{vmatrix}+(xyz)\begin{vmatrix} x & { x }^{ 2 } & 1 \\ y & { y }^{ 2 } & 1 \\ z & { z }^{ 2 } & 1 \end{vmatrix}=0\\ \Rightarrow \quad \begin{vmatrix} x & { x }^{ 2 } & 1 \\ y & { y }^{ 2 } & 1 \\ z & { z }^{ 2 } & 1 \end{vmatrix}+(xyz)\begin{vmatrix} x & { x }^{ 2 } & 1 \\ y & { y }^{ 2 } & 1 \\ z & { z }^{ 2 } & 1 \end{vmatrix}=0\\ \Rightarrow \quad (\begin{vmatrix} x & { x }^{ 2 } & 1 \\ y & { y }^{ 2 } & 1 \\ z & { z }^{ 2 } & 1 \end{vmatrix})(xyz+1)=0\\ \therefore \quad xyz=-1=A\\ \Rightarrow \quad { (\sqrt [ 4 ]{ 6 } +\sqrt [ 6 ]{ 4 } ) }^{ 50 }\\ \Rightarrow \quad { T }_{ r+1 }={ ^{ 50 }C }_{ r }{ (6) }^{ ^{ \frac { 50-r }{ 4 } } }{ (4) }^{ \frac { r }{ 6 } }\\ \therefore \quad Rational\quad terms\quad are\quad for\quad r=6,18,30,42\\ \Rightarrow \quad B=4\quad and\quad C=47\\ \Rightarrow \quad Solving\quad further\quad equation\quad we\quad get\quad \lambda =11\\ \Rightarrow \quad B+C+\lambda-A-1 =\boxed { 62 } .

Is it just me or is this sum way too overrated???

Rushikesh Joshi - 6 years, 2 months ago

Log in to reply

too easy for level 5...

Vivek Modi - 6 years, 2 months ago

The value of λ \lambda comes out to be 11 not 12 :)It may be a typo. Anyways nice solution… +1

Aditya Tiwari - 6 years, 2 months ago

Log in to reply

Ohhh yeah. That was a mistake, I corrected it.

Yash Choudhary - 6 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...