lets play with factorials

P = 1 ! + 2 2 ! + 3 3 ! + + 12 12 ! \large P = 1! + 2 \cdot 2! + 3 \cdot 3! + \cdots+ 12 \cdot 12!

Find the remainder when P + 4 P + 4 is divided by 13.


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Anish Roy
May 13, 2017

Given 1 1 ! + 2 2 ! + 3 3 ! + + 12 12 ! 1 \cdot 1! +2 \cdot 2!+3 \cdot 3!+ \cdots +12 \cdot 12! .
Now, formulating the above statement it can be written as P = ( 2 1 ) . 1 ! + ( 3 1 ) . 2 ! + ( 4 1 ) . 3 ! + . . . . . . . . . . . . . + ( 13 1 ) . 12 ! P = (2-1).1! + (3-1).2! + (4-1).3! + ............. + (13-1).12! P = 2.1 ! 1 ! + 3.2 ! 2 ! + 4.3 ! 3 ! + . . . . . . . . . . . . + 13.12 ! 12 ! P = 2.1! - 1! + 3.2! - 2! + 4.3! - 3! + ............ + 13.12! - 12! Now we know that ( n + 1 ) ! = ( n + 1 ) . n ! (n + 1)! = (n + 1).n! P = 2 ! 1 ! + 3 ! 2 ! + 4 ! 3 ! + . . . . . . . . . . + 13 ! 12 ! P = 2! - 1! + 3! - 2! + 4! - 3! + .......... + 13! - 12! P = 13 ! 1 ! \therefore P = 13! - 1! P + 4 = 13 ! 1 + 4 = 13 ! + 3 \Rightarrow P + 4 = 13! -1 + 4 = 13! + 3 .
Now we see that 13 ! 13! is divisible by 13 13 . So, remainder = 3 =\boxed 3

Tapas Mazumdar
May 13, 2017

P = 1 × 1 ! + 2 × 2 ! + 3 × 3 ! + + + 12 × 12 ! = r = 1 12 r r ! = r = 1 12 ( r + 1 1 ) r ! = r = 1 12 ( r + 1 ) r ! r ! = r = 1 12 ( r + 1 ) ! r ! Sum telescopes = 13 ! 1 ! 1 ( m o d 13 ) \begin{aligned} P &= 1 \times 1! + 2 \times 2! + 3 \times 3! + \cdots + + 12 \times 12! \\ &= \displaystyle \sum_{r=1}^{12} r \cdot r! \\ &= \displaystyle \sum_{r=1}^{12} (r+1-1) \cdot r! \\ &= \displaystyle \sum_{r=1}^{12} (r+1) r! - r! \\ &= \displaystyle \sum_{r=1}^{12} (r+1)! - r! & \small {\color{#3D99F6} \text{Sum telescopes}} \\ &= 13! - 1! \\ &\equiv -1 \pmod{13} \end{aligned}

P + 4 1 + 4 = 3 ( m o d 13 ) \therefore P + 4 \equiv -1 + 4 = \boxed{3} \pmod{13}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...